Triple network hydrogel-based structure triboelectric nanogenerator for human motion detection and structural health monitoring

被引:29
作者
Xie, Bochao [1 ,2 ]
Ma, Yingying [1 ,3 ]
Luo, Nianzu [2 ]
Chen, Yusen [4 ]
Liu, Yana [4 ]
Nie, Kecheng [5 ]
Jia, Yutong [4 ]
Yin, Rong [6 ]
Liu, Yang [6 ]
机构
[1] Yale Univ, Sch Engn & Appl Sci, New Haven, CT 06250 USA
[2] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[3] Shandong Univ, SDU ANU Joint Sci Coll, Weihai 264209, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Elect Sci & Engn, Elect Mat Res Lab, Key Lab, Xian 710049, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[6] North Carolina State Univ, Wilson Coll Text, Raleigh, NC 27695 USA
关键词
Triboelectric nanogenerator; Energy harvesting; Self-powered sensing; K -eccentric brace; Structural Health Monitoring;
D O I
10.1016/j.nanoen.2024.110095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we developed a high-performance triple network (TN) PVA/PAAM/PEDOT/Zn2+ (PMPZ) hydrogel with exceptional mechanical properties and stable output performance. The robust and highly tough TN structure, fabricated via a Zn2+ pinned hydrogel and multi-network interpenetrating polymerization process, demonstrates high mechanical strength alongside exceptional mechanical properties. The PMPZ hydrogels exhibit notable mechanical sensing capabilities (gauge factor: 48.6) while maintaining excellent tensile (83.79 KPa) and compressive (96 MPa) strengths. As a triboelectric nanogenerator (TENG), the PMPZ-TENG shows outstanding flexibility and integrability, achieving a maximum open-circuit voltage (Voc) of 326.89 V and a peak power density of 368.3 mu W/cm2 with a load resistance of 10E8 Omega. Furthermore, the PMPZ-TENG demonstrates enduring practicality and responsiveness as a self-powered sensor. These properties make the PMPZ-TENG highly suitable for applications in human health monitoring. Additionally, we conducted computational simulations on the hydrogel and seismic-resistant civil models. 48 prototype structures simulated different seismic hazard levels to effectively capture plastic hinge deformation within high-strength steel composite K-shaped eccentric braced steel frames. The plastic hinge deformations informed the establishment of physical seismic models for structural health monitoring (SHM). This study not only introduces a high-performance PMPZ-TENG meeting practical requirements but also establishes a novel pathway for integrating TENGs in SHM.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels [J].
Ajdary, Rubina ;
Tardy, Blaise L. ;
Mattos, Bruno D. ;
Bai, Long ;
Rojas, Orlando J. .
ADVANCED MATERIALS, 2021, 33 (28)
[2]   Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration [J].
Arndt, Christine ;
Hauck, Margarethe ;
Wacker, Irene ;
Zeller-Plumhoff, Berit ;
Rasch, Florian ;
Taale, Mohammadreza ;
Nia, Ali Shaygan ;
Feng, Xinliang ;
Adelung, Rainer ;
Schroeder, Rasmus R. ;
Schuett, Fabian ;
Selhuber-Unkel, Christine .
NANO LETTERS, 2021, 21 (08) :3690-3697
[3]   Autonomously Adhesive, Stretchable, and Transparent Solid-State Polyionic Triboelectric Patch for Wearable Power Source and Tactile Sensor [J].
Bai, Zhiqing ;
Xu, Yunlong ;
Lee, Chengkuo ;
Guo, Jiansheng .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (37)
[4]   Multifunctional Nanogenerator-Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure [J].
Barri, Kaveh ;
Zhang, Qianyun ;
Kline, Jake ;
Lu, Wenyun ;
Luo, Jianzhe ;
Sun, Zhe ;
Taylor, Brandon E. E. ;
Sachs, Steven G. G. ;
Khazanovich, Lev ;
Wang, Zhong Lin ;
Alavi, Amir H. H. .
ADVANCED MATERIALS, 2023, 35 (14)
[5]   Enhancement of the Mechanical Properties of Hydrogels with Continuous Fibrous Reinforcement [J].
Beckett, Laura E. ;
Lewis, Jackson T. ;
Tonge, Theresa K. ;
Korley, LaShanda T. J. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (10) :5453-5473
[6]   A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application [J].
Cai, Yuting ;
Qin, Jinbao ;
Li, Weimin ;
Tyagi, Abhishek ;
Liu, Zhenjing ;
Hossain, Delowar ;
Chen, Haomin ;
Kim, Jang-Kyo ;
Liu, Hongwei ;
Zhuang, Minghao ;
You, Jiawen ;
Xu, Feng ;
Lu, Xinwu ;
Suna, Dazhi ;
Luo, Zhengtang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) :27099-27109
[7]   Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles [J].
Chen, Ying ;
Zheng, Kun ;
Niu, Li ;
Zhang, Yutao ;
Liu, Yupeng ;
Wang, Chunpeng ;
Chu, Fuxiang .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 128 :414-420
[8]   An airflow-driven system for scalable production of nano-microfiber wrapped triboelectric yarns for wearable applications [J].
Chen, Yu ;
Hua, Jie ;
Ling, Yali ;
Liu, Yang ;
Chen, Mingtai ;
Ju, Beomjun ;
Gao, Wei ;
Mills, Amanda ;
Tao, Xiaoming ;
Yin, Rong .
CHEMICAL ENGINEERING JOURNAL, 2023, 477
[9]   Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction [J].
Chen, Yu ;
Chen, Erdong ;
Wang, Zihao ;
Ling, Yali ;
Fisher, Rosie ;
Li, Mengjiao ;
Hart, Jacob ;
Mu, Weilei ;
Gao, Wei ;
Tao, Xiaoming ;
Yang, Bao ;
Yin, Rong .
NANO ENERGY, 2022, 104
[10]   Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application [J].
Chen, Yu ;
Ling, Yali ;
Yin, Rong .
SENSORS, 2022, 22 (24)