Multiple Fault Diagnosis in a Wind Turbine Gearbox with Autoencoder Data Augmentation and KPCA Dimension Reduction

被引:0
|
作者
Felix, Leonardo Oldani [1 ]
Martins, Dionisio Henrique Carvalho de Sa So [1 ]
Monteiro, Ulisses Admar Barbosa Vicente [1 ]
Pinto, Luiz Antonio Vaz [1 ]
Tarrataca, Luis [2 ]
Martins, Carlos Alfredo Orfao [1 ]
机构
[1] Fed Univ Rio de Janeiro UFRJ, Ocean Engn Program PENO, Ctr Tecnol, Bloco 1-108,Cidade Univ, BR-20945970 Rio De Janeiro, RJ, Brazil
[2] Fed Ctr Technol Educ Rio de Janeiro, BR-25620003 Rio De Janeiro, RJ, Brazil
关键词
Gearbox; Fault diagnosis; Autoencoder; KPCA; SVM; Random Forest; COMPONENT ANALYSIS; FEATURE-EXTRACTION; CLASSIFICATION;
D O I
10.1007/s10921-024-01131-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Gearboxes, as critical components, often operate in demanding conditions, enduring constant exposure to variable loads and speeds. In the realm of condition monitoring, the dataset primarily comprises data from normal operating conditions, with significantly fewer instances of faulty conditions, resulting in imbalanced datasets. To address the challenges posed by this data disparity, researchers have proposed various solutions aimed at enhancing the performance of classification models. One such solution involves balancing the dataset before the training phase through oversampling techniques. In this study, we utilized the Sparse Autoencoder technique for data augmentation and employed Support Vector Machine (SVM) and Random Forest (RF) for classification. We conducted four experiments to evaluate the impact of data imbalance on classifier performance: (1) using the original dataset without data augmentation, (2) employing partial data augmentation, (3) applying full data augmentation, and (4) balancing the dataset while using Kernel Principal Component Analysis (KPCA) for dimensionality reduction. Our findings revealed that both algorithms achieved accuracies exceeding 90%, even when employing the original non-augmented data. When partial data augmentation was employed both algorithms were able to achieve accuracies beyond 98%. Full data augmentation yielded slightly better results compared to partial augmentation. After reducing dimensions from 18 to 11 using KPCA, both classifiers maintained robust performance. SVM achieved an overall accuracy of 98.72%, while RF achieved 96.06% accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An Improved Conditional Generative Adversarial Method for Wind Turbine Gearbox Fault Diagnosis With Imbalance Data
    Zeng Xiangjun
    Xia Lingqin
    Feng Chen
    Yang Ming
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 38727 - 38739
  • [32] An optimized stacked diagnosis structure for fault diagnosis of wind turbine planetary gearbox
    Lu, Li
    He, Yigang
    Ruan, Yi
    Yuan, Weibo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (07)
  • [33] Research on the Fault Diagnosis of Wind Turbine Gearbox Based on Bayesian Networks
    Chen, Jigang
    Hao, Guowen
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, 2011, 124 : 217 - 223
  • [34] Review of condition monitoring and fault diagnosis technologies for wind turbine gearbox
    Nie, Mengyan
    Wang, Ling
    2ND INTERNATIONAL THROUGH-LIFE ENGINEERING SERVICES CONFERENCE, 2013, 11 : 287 - 290
  • [35] An Envelope Time Synchronous Averaging for Wind Turbine Gearbox Fault Diagnosis
    Touti, Walid
    Salah, Mohamed
    Sheng, Shawn
    Bacha, Khmais
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (04) : 6513 - 6525
  • [36] Wind Turbine Gearbox Fault Detection Using Multiple Sensors With Features Level Data Fusion
    Lu, Y.
    Tang, J.
    Luo, H.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [37] Generative Transfer Learning for Intelligent Fault Diagnosis of the Wind Turbine Gearbox
    Guo, Jianwen
    Wu, Jiapeng
    Zhang, Shaohui
    Long, Jianyu
    Chen, Weidong
    Cabrera, Diego
    Li, Chuan
    SENSORS, 2020, 20 (05)
  • [38] Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox
    Jiang, Guoqian
    He, Haibo
    Yan, Jun
    Xie, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (04) : 3196 - 3207
  • [39] Fault Diagnosis of Wind Turbine Gearbox Based on SSDAE-ELM
    Zhang, Jianhua
    Dong, Haibo
    Shan, Rui
    Hou, Guolian
    Huang, Congzhi
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5407 - 5412
  • [40] Wind Turbine Gearbox Fault Diagnosis Based on Multi-Sensor Signals Fusion
    Zhao, Yao
    Song, Ziyu
    Li, Dongdong
    Qian, Rongrong
    Lin, Shunfu
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2024, 9 (04) : 96 - 109