Multiple Fault Diagnosis in a Wind Turbine Gearbox with Autoencoder Data Augmentation and KPCA Dimension Reduction

被引:0
|
作者
Felix, Leonardo Oldani [1 ]
Martins, Dionisio Henrique Carvalho de Sa So [1 ]
Monteiro, Ulisses Admar Barbosa Vicente [1 ]
Pinto, Luiz Antonio Vaz [1 ]
Tarrataca, Luis [2 ]
Martins, Carlos Alfredo Orfao [1 ]
机构
[1] Fed Univ Rio de Janeiro UFRJ, Ocean Engn Program PENO, Ctr Tecnol, Bloco 1-108,Cidade Univ, BR-20945970 Rio De Janeiro, RJ, Brazil
[2] Fed Ctr Technol Educ Rio de Janeiro, BR-25620003 Rio De Janeiro, RJ, Brazil
关键词
Gearbox; Fault diagnosis; Autoencoder; KPCA; SVM; Random Forest; COMPONENT ANALYSIS; FEATURE-EXTRACTION; CLASSIFICATION;
D O I
10.1007/s10921-024-01131-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Gearboxes, as critical components, often operate in demanding conditions, enduring constant exposure to variable loads and speeds. In the realm of condition monitoring, the dataset primarily comprises data from normal operating conditions, with significantly fewer instances of faulty conditions, resulting in imbalanced datasets. To address the challenges posed by this data disparity, researchers have proposed various solutions aimed at enhancing the performance of classification models. One such solution involves balancing the dataset before the training phase through oversampling techniques. In this study, we utilized the Sparse Autoencoder technique for data augmentation and employed Support Vector Machine (SVM) and Random Forest (RF) for classification. We conducted four experiments to evaluate the impact of data imbalance on classifier performance: (1) using the original dataset without data augmentation, (2) employing partial data augmentation, (3) applying full data augmentation, and (4) balancing the dataset while using Kernel Principal Component Analysis (KPCA) for dimensionality reduction. Our findings revealed that both algorithms achieved accuracies exceeding 90%, even when employing the original non-augmented data. When partial data augmentation was employed both algorithms were able to achieve accuracies beyond 98%. Full data augmentation yielded slightly better results compared to partial augmentation. After reducing dimensions from 18 to 11 using KPCA, both classifiers maintained robust performance. SVM achieved an overall accuracy of 98.72%, while RF achieved 96.06% accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Wind turbine gearbox fault diagnosis via adaptive IMFogram
    Yi, Cancan
    Zhang, Fuqi
    Huang, Tao
    Xiao, Han
    Qin, Bo
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2542 - 2558
  • [22] Fault Diagnosis Method of Wind Turbine Gearbox by Optimized GAN
    Xu T.
    Su Y.
    Meng L.
    Lan X.
    Li Y.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (03): : 62 - 66
  • [23] Fault Diagnosis for Wind Turbine Gearbox Based on Wavelet Analysis
    Zhou Wen-jing
    Shen Yan-xia
    Wang Long
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 1638 - 1641
  • [24] The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network
    Yang, Shulian
    Li, Wenhai
    Wang, Canlin
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS, 2007, : 1327 - +
  • [25] FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON DEEP LEARNING
    Xiao J.
    Jin J.
    Li C.
    Xu Z.
    Luo S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (05): : 302 - 309
  • [26] Application of Wavelet Neural Networks on Vibration Fault Diagnosis for Wind Turbine Gearbox
    Huang, Qian
    Jiang, Dongxiang
    Hong, Liangyou
    Ding, Yongshan
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT 2, PROCEEDINGS, 2008, 5264 : 313 - 320
  • [27] Fault Diagnosis of Wind Turbine Gearbox Using DFIG Stator Current Analysis
    Cheng, Fangzhou
    Wei, Chun
    Qu, Liyan
    Qiao, Wei
    2016 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2016,
  • [28] Integrated condition monitoring scheme for bearing fault diagnosis of a wind turbine gearbox
    Inturi, Vamsi
    Sabareesh, G. R.
    Supradeepan, K.
    Penumakala, P. K.
    JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (12) : 1852 - 1865
  • [29] Standardisation of wind turbine SCADA data for gearbox fault detection
    Ferguson, David
    McDonald, Alasdair
    Carroll, James
    Lee, Hyunjoo
    JOURNAL OF ENGINEERING-JOE, 2019, (18): : 5147 - 5151
  • [30] Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization
    Wang S.
    Zhang W.
    Zheng G.
    Li X.
    Zhao Y.
    Energy Engineering: Journal of the Association of Energy Engineering, 2022, 119 (06): : 2431 - 2445