A novel approach to coral species classification using deep learning and unsupervised feature extraction

被引:0
|
作者
Firdous, R. Jannathul [1 ]
Sabena, S. [2 ]
机构
[1] Anna Univ, Elect & Commun Engn, Chennai, India
[2] Anna Univ, CSE, Reg Campus Tirunelveli, Tirunelveli, India
关键词
Feature extraction; sparsity-constrained deep autoencoder; lighting condition; coral species; convolutional deep autoencoder; classification; machine learning; red channel information; underwater imaging and prediction;
D O I
10.1080/14498596.2024.2383881
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This study presents a novel methodology to enhance coral species classification in underwater images by integrating Tri Convolutional Deep Autoencoders (TRI-CDAE) and Sparse Deep Autoencoders (SPDAE). TRI-CDAE employs three parallel CDAEs trained on distinct color spaces (RGB, HSV, LUV) to capture diverse features. These extracted features are fused and refined using SPDAE, promoting sparsity and enhancing discriminative power. The refined features are then classified using a softmax classifier. Evaluation on four coral image datasets shows exceptional performance, with recall (96.5%), F1 score (97.4%), precision (97.2%), accuracy (98.5%), Cohen's J (0.959), Jaccard Index (0.971), Cohen's Kappa (0.961), and Matthews Correlation Coefficient (0.982).
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification
    Hemanth, S. V.
    Alagarsamy, Saravanan
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (01) : 881 - 895
  • [42] Wear particle image analysis: feature extraction, selection and classification by deep and machine learning
    Vivek, Joseph
    Venkatesh, Naveen S.
    Mahanta, Tapan K.
    Sugumaran, V
    Amarnath, M.
    Ramteke, Sangharatna M.
    Marian, Max
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2024, 76 (05) : 599 - 607
  • [43] A Novel and Efficient Feature Extraction Method for Deep Learning Based Continuous Estimation
    Ma, Chenfei
    Guo, Weiyu
    Zhang, Hang
    Samuel, Oluwarotimi Williams
    Ji, Xiaopeng
    Xu, Lisheng
    Li, Guanglin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 7341 - 7348
  • [44] Unsupervised Multi-Level Feature Extraction for Improvement of Hyperspectral Classification
    Sun, Qiaoqiao
    Liu, Xuefeng
    Bourennane, Salah
    REMOTE SENSING, 2021, 13 (08)
  • [45] Comprehensive Review of Feature Extraction Techniques for sEMG Signal Classification: From Handcrafted Features to Deep Learning Approaches
    Sid'El Moctar, Sidi Mohamed
    Rida, Imad
    Boudaoud, Sofiane
    IRBM, 2024, 45 (06)
  • [46] Hyperspectral Data Feature Extraction Using Deep Learning Hybrid Model
    Jiang, Xinhua
    Xue, Heru
    Zhang, Lina
    Gao, Xiaojing
    Zhou, Yanqing
    Bai, Jie
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 3529 - 3543
  • [47] Coral reef image classification employing Improved LDP for feature extraction
    Mary, N. Ani Brown
    Dharma, Dejey
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 49 : 225 - 242
  • [48] An end-to-end intrusion detection system with IoT dataset using deep learning with unsupervised feature extraction
    Kunang, Yesi Novaria
    Nurmaini, Siti
    Stiawan, Deris
    Suprapto, Bhakti Yudho
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (03) : 1619 - 1648
  • [49] Unsupervised Feature Learning for Aerial Scene Classification
    Cheriyadat, Anil M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 439 - 451
  • [50] Feature Extraction and Emotional Classification of Tourism Souvenirs Based on Deep Learning
    Wang Y.
    Zhang Y.
    Computer-Aided Design and Applications, 2024, 21 (s7): : 119 - 132