A novel approach to coral species classification using deep learning and unsupervised feature extraction

被引:0
|
作者
Firdous, R. Jannathul [1 ]
Sabena, S. [2 ]
机构
[1] Anna Univ, Elect & Commun Engn, Chennai, India
[2] Anna Univ, CSE, Reg Campus Tirunelveli, Tirunelveli, India
关键词
Feature extraction; sparsity-constrained deep autoencoder; lighting condition; coral species; convolutional deep autoencoder; classification; machine learning; red channel information; underwater imaging and prediction;
D O I
10.1080/14498596.2024.2383881
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This study presents a novel methodology to enhance coral species classification in underwater images by integrating Tri Convolutional Deep Autoencoders (TRI-CDAE) and Sparse Deep Autoencoders (SPDAE). TRI-CDAE employs three parallel CDAEs trained on distinct color spaces (RGB, HSV, LUV) to capture diverse features. These extracted features are fused and refined using SPDAE, promoting sparsity and enhancing discriminative power. The refined features are then classified using a softmax classifier. Evaluation on four coral image datasets shows exceptional performance, with recall (96.5%), F1 score (97.4%), precision (97.2%), accuracy (98.5%), Cohen's J (0.959), Jaccard Index (0.971), Cohen's Kappa (0.961), and Matthews Correlation Coefficient (0.982).
引用
收藏
页数:28
相关论文
共 50 条
  • [21] An Automated ECG Beat Classification System Using Deep Neural Networks with an Unsupervised Feature Extraction Technique
    Nurmaini, Siti
    Partan, Radiyati Umi
    Caesarendra, Wahyu
    Dewi, Tresna
    Rahmatullah, Muhammad Naufal
    Darmawahyuni, Annisa
    Bhayyu, Vicko
    Firdaus, Firdaus
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [22] Deep Feature Extraction for Cymbidium Species Classification Using Global-Local CNN
    Fu, Qiaojuan
    Zhang, Xiaoying
    Zhao, Fukang
    Ruan, Ruoxin
    Qian, Lihua
    Li, Chunnan
    HORTICULTURAE, 2022, 8 (06)
  • [23] Deep Learning for Plant Species Classification Using Leaf Vein Morphometric
    Tan, Jing Wei
    Chang, Siow-Wee
    Abdul-Kareem, Sameem
    Yap, Hwa Jen
    Yong, Kien-Thai
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (01) : 82 - 90
  • [24] Flexible unsupervised feature extraction for image classification
    Liu, Yang
    Nie, Feiping
    Gao, Quanxue
    Gao, Xinbo
    Han, Jungong
    Shao, Ling
    NEURAL NETWORKS, 2019, 115 : 65 - 71
  • [25] An intelligent music genre analysis using feature extraction and classification using deep learning techniques
    Wang Hongdan
    SalmiJamali, Siti
    Chen Zhengping
    Shan Qiaojuan
    Ren Le
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [26] Music Feature Recognition and Classification Using a Deep Learning Algorithm
    Xu, Lihong
    Zhang, Shenghuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2023, 22 (03)
  • [27] Image Clustering and Feature Extraction by Utilizing an Improvised Unsupervised Learning Approach
    Bhuvanya, R.
    Kavitha, M.
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2023, 23 (02) : 3 - 19
  • [28] A methodology for unsupervised feature learning in hyperspectral imagery using deep belief network
    Shibi, C. Sherin
    Gayathri, R.
    CURRENT SCIENCE, 2021, 120 (11): : 1705 - 1711
  • [29] Association Rules Based Feature Extraction for Deep Learning Classification
    Kharsa, Ruba
    Al Aghbari, Zaher
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 72 - 83
  • [30] A Deep Learning Approach for Retinal Image Feature Extraction
    Hoque, Mohammed Enamul
    Kipli, Kuryati
    Zulcaffle, Tengku Mohd Afendi
    Al-Hababi, Abdulrazak Yahya Saleh
    Mat, Dayang Azra Awang
    Sapawi, Rohana
    Joseph, Annie Anak
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 29 (04): : 2543 - 2563