Improving supernova detection by using YOLOv8 for astronomical image analysis

被引:0
作者
Nergiz, Ikra [1 ]
Cirag, Kaan [1 ]
Calik, Nurullah [2 ]
机构
[1] Istanbul Medeniyet Univ, Dept Comp Engn, TR-34700 Istanbul, Turkiye
[2] Istanbul Medeniyet Univ, Dept Biomed Engn, TR-34700 Istanbul, Turkiye
关键词
Supernova; Deep learning; YOLO models; Object detection;
D O I
10.1007/s11760-024-03438-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the realm of astronomical imagery, the identification of supernovae poses a complex and intricate challenge. This intricacy extends beyond mere luminosity assessment, encompassing the discernment of diverse patterns inherent to the celestial phenomenon. Recent advancements in the field of computer vision have sought to address this challenge through the development of novel models. The labeled telescopic images capturing supernovae instances are collected from two distinct observatories, namely Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) and PSP (Popular Supernova Project), strategically positioned at disparate global locations. In this paper, we delve into the application of the cutting-edge YOLOv8 (You Only Look Once) model for supernova detection. Specifically, in this study, a comparison was made with other state-of-the-art (SoTA) models over 80:20, 50:50, and 20:80 train-test ratios. YOLOv8 has a superior performance by obtaining 98.9%, 98.5%, and 96.9% mAP.50:.95\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{mAP}<^>{.50:.95}$$\end{document} scores respectively. The presented values reveal the efficacy of YOLOv8 when applied to datasets featuring small-size bounding boxes, in the context of supernova detection. Hence, a noteworthy enhancement has been realized within the domain of astronomical imagery.
引用
收藏
页码:8489 / 8497
页数:9
相关论文
共 50 条
  • [1] Improving the Detection and Positioning of Camouflaged Objects in YOLOv8
    Han, Tong
    Cao, Tieyong
    Zheng, Yunfei
    Chen, Lei
    Wang, Yang
    Fu, Bingyang
    ELECTRONICS, 2023, 12 (20)
  • [2] Enhanced YOLOv8 Object Detection Model for Construction Worker Safety Using Image Transformations
    Seth, Yash
    Sivagami, M.
    IEEE ACCESS, 2025, 13 : 10582 - 10594
  • [3] Vehicle detection and classification using an ensemble of EfficientDet and YOLOv8
    Lv, Caixia
    Mittal, Usha
    Madaan, Vishu
    Agrawal, Prateek
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [4] Camel detection using fine-tuned YOLOv8
    Gasmi, Rim
    Chetoui, Mohamed
    Fahem, Messilva
    Benslimane, Heythem
    Akhloufi, Moulay A.
    PROGRAM OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND AUTOMATIC CONTROL, ICEEAC 2024, 2024,
  • [5] A Lightweight Network Based on YOLOv8 for Improving Detection Performance and the Speed of Thermal Image Processing
    Dinh, Huyen Trang
    Kim, Eung-Tae
    ELECTRONICS, 2025, 14 (04):
  • [6] YOLOv8: Advancements and Innovations in Object Detection
    Swathi, Y.
    Challa, Manoj
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 2, SMARTCOM 2024, 2024, 946 : 1 - 13
  • [7] Early detection of marine bioinvasion by sun corals using YOLOv8
    Ana Carolina N. Luz
    Viviane R. Barroso
    Daniela Batista
    Aléxia A. Lessa
    Ricardo Coutinho
    Fábio C. Xavier
    Intelligent Marine Technology and Systems, 3 (1):
  • [8] YOLOv8-SAB: Terahertz Image Detection Network Based on Shuffle Attention and YOLOv8
    Jiang, Yu
    Li, Yizhang
    Wang, Zhongmin
    Qi, Feng
    Wang, Fenggui
    Liu, Yongsheng
    Chen, Tao
    IEEE ACCESS, 2024, 12 : 133328 - 133338
  • [9] Passive Millimeter Wave Concealed Object Detection Using YOLOv8
    Becker, Kyle
    Benecchi, Andrew
    Bourlai, Thirimachos
    SOUTHEASTCON 2024, 2024, : 884 - 887
  • [10] A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition
    Li, Yiting
    Fan, Qingsong
    Huang, Haisong
    Han, Zhenggong
    Gu, Qiang
    DRONES, 2023, 7 (05)