Differential crop yield responses to elevated CO2 attributed to varying biomass part stimulations: a meta-analysis

被引:1
|
作者
Bai, Yanling [1 ,2 ,3 ]
Liu, Liu [1 ,2 ,3 ]
Li, Hao [4 ]
Peng, Xi [5 ]
Fa, Keyu [1 ,2 ,3 ]
Huang, Guanhua [1 ,2 ,3 ]
机构
[1] China Agr Univ, State Key Lab Efficient Utilizat Agr Water Resourc, Beijing, Peoples R China
[2] China Agr Univ, Coll Water Resources & Civil Engn, Beijing, Peoples R China
[3] China Agr Univ, Ctr Agr Water Res China, Beijing, Peoples R China
[4] Univ Ghent, Hydroclimate Extremes Lab, Ghent, Belgium
[5] Univ Ghent, Dept Environm, Q ForestLab, Lab Quantitat Forest Ecosyst Sci, Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Crops; CO2; fertilization; Biomass response; Yield; Climate change; CARBON-DIOXIDE CONCENTRATION; STOMATAL CONDUCTANCE; R-PACKAGE; WHEAT; MAIZE; DROUGHT; GROWTH; PLANT; FOOD; PHOTOSYNTHESIS;
D O I
10.1007/s11104-024-06974-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background and Aims <bold> </bold> Elevated carbon dioxide (eCO(2)) is known to enhance biomass accumulation and plant growth by improving photosynthesis and promoting stomatal closure. However, the effects of CO(2 )fertilization on aboveground and belowground biomass differ significantly among crops, which may influence agricultural productivity and carbon storage in plants and soils. This study aims to quantify impacts of eCO(2) on crop yield and biomass and to identify the key factors influencing crop yield responses. Methods This study analyzed the biomass changes in response to eCO(2 )and its impacts on agricultural yields dedicated to major crops, i.e., maize, rice, and wheat, using a meta-analysis method based on 757 pairs of global observations from 178 peer-reviewed articles. Results The results indicated that eCO(2) increased the yields of maize, rice, and wheat by approximately 12%, 17% and 22%, respectively. Variation in biomass accounted for 39%, 28% and 43% of the yield response in these three crops, respectively. In maize and rice, the non-yield components of the aboveground biomass posed direct effects and acted as mediating variables, whereas in rice, the belowground biomass was more influential. Conclusion The present findings revealed the dominant role of various biomass components in determining the impact of eCO(2) on agricultural productivity. In rice, belowground biomass was identified as the most significant factor affecting the yield response to CO2 fertilization. For maize and wheat, the non-yielding fraction of the aboveground biomass was the most important factor.
引用
收藏
页码:981 / 996
页数:16
相关论文
共 50 条
  • [21] Effects of elevated CO2 on the protein concentration of food crops:: a meta-analysis
    Taub, Daniel R.
    Miller, Brian
    Allen, Holly
    GLOBAL CHANGE BIOLOGY, 2008, 14 (03) : 565 - 575
  • [22] Variation in Yield Responses to Elevated CO2 and a Brief High Temperature Treatment in Quinoa
    Bunce, James A.
    PLANTS-BASEL, 2017, 6 (03): : 442 - 453
  • [23] Nitrification, denitrification, and related functional genes under elevated CO2: A meta-analysis in terrestrial ecosystems
    Gineyts, Robin
    Niboyet, Audrey
    GLOBAL CHANGE BIOLOGY, 2023, 29 (07) : 1839 - 1853
  • [24] Analysis of the experimental variability in wheat responses to elevated CO2 and temperature
    Wolf, J
    van Oijen, M
    Kempenaar, C
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2002, 93 (1-3) : 227 - 247
  • [25] Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies
    Krishnan, P.
    Swain, D. K.
    Bhaskar, B. Chandra
    Nayak, S. K.
    Dash, R. N.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2007, 122 (02) : 233 - 242
  • [26] Yield responses of wild C3 and C4 crop progenitors to subambient CO2: a test for the role of CO2 limitation in the origin of agriculture
    Cunniff, Jennifer
    Jones, Glynis
    Charles, Michael
    Osborne, Colin P.
    GLOBAL CHANGE BIOLOGY, 2017, 23 (01) : 380 - 393
  • [27] Links across ecological scales: Plant biomass responses to elevated CO2
    Maschler, Julia
    Bialic-Murphy, Lalasia
    Wan, Joe
    Andresen, Louise C.
    Zohner, Constantin M.
    Reich, Peter B.
    Luscher, Andreas
    Schneider, Manuel K.
    Muller, Christoph
    Moser, Gerald
    Dukes, Jeffrey S.
    Schmidt, Inger Kappel
    Bilton, Mark C.
    Zhu, Kai
    Crowther, Thomas W.
    GLOBAL CHANGE BIOLOGY, 2022, 28 (21) : 6115 - 6134
  • [28] A global meta-analysis of woody plant responses to elevated CO2: implications on biomass, growth, leaf N content, photosynthesis and water relations
    Mthunzi Mndela
    Julius T. Tjelele
    Ignacio C. Madakadze
    Mziwanda Mangwane
    Igshaan M. Samuels
    Francuois Muller
    Hosia T. Pule
    Ecological Processes, 11
  • [29] Altered root traits due to elevated CO2: a meta-analysis
    Nie, Ming
    Lu, Meng
    Bell, Jennifer
    Raut, Swastika
    Pendall, Elise
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2013, 22 (10): : 1095 - 1105
  • [30] Has the Impact of Rising CO2 on Plants been Exaggerated by Meta-Analysis of Free Air CO2 Enrichment Studies?
    Haworth, Matthew
    Hoshika, Yasutomo
    Killi, Dilek
    FRONTIERS IN PLANT SCIENCE, 2016, 7