Poisson geometry, monoidal Fukaya categories, and commutative Floer cohomology rings

被引:1
作者
Pascaleff, James [1 ]
机构
[1] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
来源
ENSEIGNEMENT MATHEMATIQUE | 2024年 / 70卷 / 3-4期
关键词
symplectic groupoid; monoidal category; Fukaya category; Floer cohomology; HOMOTOPY-THEORY; INTEGRABILITY; PRODUCT; CURVES;
D O I
10.4171/LEM/1071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe connections between concepts arising in Poisson geometry and the theory of Fukaya categories. The key concept is that of a symplectic groupoid, which is an integration of a Poisson manifold. The Fukaya category of a symplectic groupoid is monoidal, and it acts on the Fukaya categories of the symplectic leaves of the Poisson structure. Conversely, we consider a wide range of known monoidal structures on Fukaya categories and observe that they all arise from symplectic groupoids. We also use the picture developed to resolve a conundrum in Floer theory: why are some Lagrangian Floer cohomology rings commutative?
引用
收藏
页码:313 / 381
页数:69
相关论文
共 80 条
  • [51] Lurie J., 2009, Available from the author's webpage
  • [52] Lurie J., 2009, Higher topos theory, V170
  • [53] Lurie J, 2018, Kerodon: an online resource for homotopy-coherent mathematics
  • [54] Lurie J., 2004, Derived algebraic geometry
  • [55] Ma'u S, 2018, SEL MATH-NEW SER, V24, P1913, DOI 10.1007/s00029-018-0403-5
  • [56] Manin Y.I., 1999, Frobenius manifolds, quantum cohomology, and moduli spaces, V47
  • [57] Associahedra, cellular W-construction and products of A∞-algebras
    Markl, M
    Shnider, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (06) : 2353 - 2372
  • [58] THE DIAGONAL OF THE ASSOCIAHEDRA
    Masuda, Naruki
    Thomas, Hugh
    Tonks, Andy
    Vallette, Bruno
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 121 - 146
  • [59] May J. P., 1972, Lecture Notes in Mathematics, V271, DOI 10.1007/BFb0067491
  • [60] Nadler D, 2009, J AM MATH SOC, V22, P233