Quantum metrology with superposition of GHZ state and Twin-Fock state

被引:1
作者
Li, Yan [1 ,2 ,3 ]
Ren, Zhihong [4 ]
机构
[1] Taiyuan Normal Univ, Dept Phys, Jinzhong 030619, Peoples R China
[2] Taiyuan Normal Univ, Inst Computat & Appl Phys, Jinzhong 030619, Peoples R China
[3] Taiyuan Normal Univ, Shanxi Key Lab Intelligent Optimizat Comp & Blockc, Jinzhong 030619, Peoples R China
[4] Shanxi Normal Univ, Sch Phys & Informat Engn, Taiyuan 030031, Peoples R China
关键词
Quantum metrology; Quantum Fisher information; SGT state; Optimal measurement; Decoherence;
D O I
10.1016/j.chaos.2024.115299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the metrological performance of the superposition of Greenberger-Horne-Zeilinger state and Twin Fock state (SGT) in quantum phase estimation. The analytical quantum Fisher information (QFI) of an.. qubit SGT state in noninteracting environment has been derived and with the increasing ratio.. in SGT state it emerges a turning point at critical.... = v 1 - 1.. center dot v 2 3, where the smallest QFI.... = (..2 + 2..)/3 is achieved. Interestingly, we find the 4-qubit SGT state performs better than TF state in all ratio region and further achieves the Heisenberg limit at.. = v 3/2. Working in the Mach-Zehnder interferometry, we have provided the optimal metrology schemes saturated by quantum CRLB for all kinds of SGT states and found the same.... also exists in the selection of phase generator and measured parity operator. Moreover, we have considered the decoherence effects and with the increasing decay the QFI in amplitude damping and phase damping channel decrease to the number of qubits involved, while it decreases to zero in depolarizing channel. Specially, the 4-qubit SGT state of.. = v 3/2 is found to perform better than GHZ state in phase damping channel. Our work enriches the metrological useful quantum resources.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Enhanced nonlinear quantum metrology with weakly coupled solitons in the presence of particle losses [J].
Alodjants, Alexander ;
Tsarev, Dmitriy ;
The Vinh Ngo ;
Lee, Ray-Kuang .
PHYSICAL REVIEW A, 2022, 105 (01)
[2]  
[Anonymous], QUANTUM DETECTION ES
[3]   Enhancing the precision of measurements in double quantum dot systems via transmission line resonator [J].
Berrada, K. .
CHAOS SOLITONS & FRACTALS, 2017, 99 :2-6
[4]   Optimal frequency measurements with maximally correlated states [J].
Bollinger, JJ ;
Itano, WM ;
Wineland, DJ ;
Heinzen, DJ .
PHYSICAL REVIEW A, 1996, 54 (06) :R4649-R4652
[5]   Improved Quantum Magnetometry beyond the Standard Quantum Limit [J].
Brask, J. B. ;
Chaves, R. ;
Kolodynski, J. .
PHYSICAL REVIEW X, 2015, 5 (03)
[6]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[7]   On-Chip Generation and Collectively Coherent Control of the Superposition of the Whole Family of Dicke States [J].
Chen, Leizhen ;
Lu, Liangliang ;
Xia, Lijun ;
Lu, Yanqing ;
Zhu, Shining ;
Ma, Xiao-song .
PHYSICAL REVIEW LETTERS, 2023, 130 (22)
[8]   Approaching optimal entangling collective measurements on quantum computing platforms [J].
Conlon, Lorcan O. ;
Vogl, Tobias ;
Marciniak, Christian D. ;
Pogorelov, Ivan ;
Yung, Simon K. ;
Eilenberger, Falk ;
Berry, Dominic W. ;
Santana, Fabiana S. ;
Blatt, Rainer ;
Monz, Thomas ;
Lam, Ping Koy ;
Assad, Syed M. .
NATURE PHYSICS, 2023, 19 (03) :351-+
[9]   Maximal Quantum Fisher Information for Mixed States [J].
Fiderer, Lukas J. ;
Fraisse, Julien M. E. ;
Braun, Daniel .
PHYSICAL REVIEW LETTERS, 2019, 123 (25)
[10]   Flexible resources for quantum metrology [J].
Friis, Nicolai ;
Orsucci, Davide ;
Skotiniotis, Michalis ;
Sekatski, Pavel ;
Dunjko, Vedran ;
Briegel, Hans J. ;
Duer, Wolfgang .
NEW JOURNAL OF PHYSICS, 2017, 19