Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

被引:0
|
作者
Steven, Soen [1 ,2 ]
Hernowo, Pandit [3 ]
Sasongko, Nugroho A. [1 ,4 ]
Soedarsono, Adik A. [5 ]
Wardani, Maya L. D. [1 ]
Otivriyanti, Geby [1 ]
Soekotjo, Ernie S. A. [1 ]
Hidayatullah, Ibnu M. [6 ]
Sophiana, Intan C. [7 ]
Culsum, Neng T. U. [8 ]
Fajri, Imam M. [2 ]
Pasymi, Pasymi [9 ]
Bindar, Yazid [2 ,10 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Sustainable Prod Syst & Life Cycle Assessm, KST BJ Habibie, South Tangerang, Banten, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Biomass Technol Workshop, Sumedang 45363, Indonesia
[3] Univ Bhayangkara Jakarta Raya, Dept Chem Engn, South Jakarta, West Java, Indonesia
[4] Univ Pertahanan Republik Indonesia, Energy Secur Grad Program, Tajur, West Java, Indonesia
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Proc & Mfg Ind Technol, KST BJ Habibie, South Tangerang, Banten, Indonesia
[6] Univ Indonesia, Fac Engn, Res Ctr Biomass Valorizat, Depok, Indonesia
[7] Univ Indonesia, Fac Engn, Dept Chem Engn, Depok, Indonesia
[8] Natl Res & Innovat Agcy BRIN, KST BJ Habibie, Res Ctr Energy Convers & Conservat, South Tangerang, Banten, Indonesia
[9] Univ Bung Hatta, Dept Chem Engn, Padang, Indonesia
[10] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung, Indonesia
关键词
CFD; combustion; Hagen-Poiseuille; multiphase flow; turbulent; RICE HUSK; PARTICLE-SIZE; TURBULENCE; BIODIESEL; DESIGN;
D O I
10.1002/apj.3137
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard k$$ k $$-epsilon$$ \upvarepsilon $$ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen-Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356-696 degrees C, and the maximum flame temperature is 1587-1697 degrees C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Micro-bubble flow simulation of dissolved air flotation process for water treatment using computational fluid dynamics technique
    Lee, Kyun Ho
    Kim, Haedong
    Kuk, Jung Won
    Chung, Jae Dong
    Park, Sungsu
    Kwon, Eilhann E.
    ENVIRONMENTAL POLLUTION, 2020, 256
  • [42] Numerical Simulation of Coal Boiler at Electric Thermal Plants Using Computational Fluid Dynamics
    Souza, Jairo Z.
    Rangel, Leonardo P.
    Monteiro, Henrique C.
    Bzuneck, Marcelo
    Felippe, Luiz
    Ellwanger, Artur R. F.
    10TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2009, 27 : 225 - 230
  • [43] COMPUTATIONAL FLUID DYNAMICS MODELING AND CRITICAL ANALYSIS OF INTERFACIAL FORCES EFFECT ON AIR-NANOFLUID BUBBLY PIPE FLOW
    Dhahri, Maher
    Hana, Aouinet
    INTERFACIAL PHENOMENA AND HEAT TRANSFER, 2019, 7 (04) : 295 - 309
  • [44] Multiphase flow and mixing quantification using computational fluid dynamics and magnetic resonance imaging
    Maru, Wessenu
    Holland, Daniel
    Lakshmanan, Susithra
    Sederman, Andy
    Thomas, Andrew
    FLOW MEASUREMENT AND INSTRUMENTATION, 2021, 77
  • [45] Computational fluid dynamics simulation of a very dense liquid-solid flow using a Eulerian model
    Yang, J
    Chalaturnyk, RJ
    COMPUTATIONAL METHODS IN MULTIPHASE FLOW III, 2005, 50 : 305 - 314
  • [46] Computational fluid dynamics simulation of the wind flow over an airport terminal building
    Liu, Chun-ho
    Leung, Dennis Y. C.
    Man, Alex C. S.
    Chan, P. W.
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2010, 11 (06): : 389 - 401
  • [47] Computational Fluid Dynamics Analysis of Slip Flow and Heat Transfer at the Entrance Region of a Circular Pipe
    Matouq, Jumana
    Al-Waked, Rafat
    Al-Rashdan, Ma'en
    Bani Mustafa, Diala
    Nasif, Mohammad S.
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [48] Ultrasound Simulation of Complex Flow Velocity Fields Based on Computational Fluid Dynamics
    Swillens, Abigail
    Lovstakken, Lasse
    Kips, Jan
    Torp, Hans
    Segers, Patrick
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2009, 56 (03) : 546 - 556
  • [49] Computational fluid dynamic simulations of thermochemical conversion of pulverized biomass in a dilute flow using spheroidal approximation
    Guo, Ning
    Llamas, Angel David Garcia
    Li, Tian
    Umeki, Kentaro
    Gebart, Rikard
    Lovas, Terese
    FUEL, 2020, 271
  • [50] Application of computational fluid dynamics and response surface methodology in downdraft gasification using multiple biomass pellets
    Ngamsidhiphongsa, Nathada
    Limleamthong, Phantisa
    Chalermsinsuwan, Benjapon
    Prasertcharoensuk, Phuet
    Wiyaratn, Wisitsree
    Arpornwichanop, Amornchai
    JOURNAL OF CLEANER PRODUCTION, 2023, 417