Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

被引:0
|
作者
Steven, Soen [1 ,2 ]
Hernowo, Pandit [3 ]
Sasongko, Nugroho A. [1 ,4 ]
Soedarsono, Adik A. [5 ]
Wardani, Maya L. D. [1 ]
Otivriyanti, Geby [1 ]
Soekotjo, Ernie S. A. [1 ]
Hidayatullah, Ibnu M. [6 ]
Sophiana, Intan C. [7 ]
Culsum, Neng T. U. [8 ]
Fajri, Imam M. [2 ]
Pasymi, Pasymi [9 ]
Bindar, Yazid [2 ,10 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Sustainable Prod Syst & Life Cycle Assessm, KST BJ Habibie, South Tangerang, Banten, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Biomass Technol Workshop, Sumedang 45363, Indonesia
[3] Univ Bhayangkara Jakarta Raya, Dept Chem Engn, South Jakarta, West Java, Indonesia
[4] Univ Pertahanan Republik Indonesia, Energy Secur Grad Program, Tajur, West Java, Indonesia
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Proc & Mfg Ind Technol, KST BJ Habibie, South Tangerang, Banten, Indonesia
[6] Univ Indonesia, Fac Engn, Res Ctr Biomass Valorizat, Depok, Indonesia
[7] Univ Indonesia, Fac Engn, Dept Chem Engn, Depok, Indonesia
[8] Natl Res & Innovat Agcy BRIN, KST BJ Habibie, Res Ctr Energy Convers & Conservat, South Tangerang, Banten, Indonesia
[9] Univ Bung Hatta, Dept Chem Engn, Padang, Indonesia
[10] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung, Indonesia
关键词
CFD; combustion; Hagen-Poiseuille; multiphase flow; turbulent; RICE HUSK; PARTICLE-SIZE; TURBULENCE; BIODIESEL; DESIGN;
D O I
10.1002/apj.3137
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard k$$ k $$-epsilon$$ \upvarepsilon $$ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen-Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356-696 degrees C, and the maximum flame temperature is 1587-1697 degrees C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Computational fluid dynamics simulation of a stirred tank reactor
    Mittal, Gaurav
    Kikugawa, Rafael Issao
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 11015 - 11019
  • [32] Equilibrium Atmospheric Boundary-Layer Flow: Computational Fluid Dynamics Simulation with Balanced Forces
    Cai, Xuhui
    Huo, Qing
    Kang, Ling
    Song, Yu
    BOUNDARY-LAYER METEOROLOGY, 2014, 152 (03) : 349 - 366
  • [33] A numerical simulation of wing walls using computational fluid dynamics
    Mak, C. M.
    Niu, J. L.
    Lee, C. T.
    Chan, K. F.
    ENERGY AND BUILDINGS, 2007, 39 (09) : 995 - 1002
  • [34] OPENFOAM SIMULATION OF TWO PHASE FLOW IN A HORIZONTAL PIPE
    Ghoudi, Z.
    Benkhaldoun, F.
    Piscaglia, F.
    Hajjaji, N.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2022, 2022, : 65 - 70
  • [35] Heat Transfer and Fluid Flow Analysis of Nanofluids in Corrugated Plate Heat Exchangers Using Computational Fluid Dynamics Simulation
    Jokar, Amir
    O'Halloran, Steven P.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2013, 5 (01)
  • [36] Computational Fluid Dynamics Simulation for Propeller
    Almazo, Diego
    Rodriguez Jorge, Ricardo
    Mizera-Pietraszko, Jolanta
    ADVANCES IN DIGITAL TECHNOLOGIES, 2017, 295 : 162 - 168
  • [37] Computational fluid dynamics of a horizontal hydrocyclone for freezing desalination
    Junkratuek, A.
    Srudhiprom, J.
    Srinophakun, T.
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2017, 12 (05) : 765 - 774
  • [38] Numerical simulation of fresh concrete flow in the L-box test using computational fluid dynamics
    Sassi, Raoudha
    Jelidi, Ahmed
    Montassar, Sami
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (23) : 1189 - 1201
  • [39] Simulation of Biodiesel Sprays under High Ambient Temperature using Computational Fluid Dynamics
    Hassan, Muhamad Najib
    Khalid, Amir
    Mustaffa, Norrizal
    Darlis, Nofrizalidris
    Jaat, Norrizam
    Andsaler, Adiba Rhaodah
    Mohammed, Akmal Nizam
    INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING (ICME2018), 2019, 1150
  • [40] Prediction of Flow in the Industrial Blower using Computational Fluid Dynamics
    Charapale, Utkarsh Diliprao
    Mathew, Arun Tom
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (05) : 12311 - 12319