Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

被引:0
|
作者
Steven, Soen [1 ,2 ]
Hernowo, Pandit [3 ]
Sasongko, Nugroho A. [1 ,4 ]
Soedarsono, Adik A. [5 ]
Wardani, Maya L. D. [1 ]
Otivriyanti, Geby [1 ]
Soekotjo, Ernie S. A. [1 ]
Hidayatullah, Ibnu M. [6 ]
Sophiana, Intan C. [7 ]
Culsum, Neng T. U. [8 ]
Fajri, Imam M. [2 ]
Pasymi, Pasymi [9 ]
Bindar, Yazid [2 ,10 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Sustainable Prod Syst & Life Cycle Assessm, KST BJ Habibie, South Tangerang, Banten, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Biomass Technol Workshop, Sumedang 45363, Indonesia
[3] Univ Bhayangkara Jakarta Raya, Dept Chem Engn, South Jakarta, West Java, Indonesia
[4] Univ Pertahanan Republik Indonesia, Energy Secur Grad Program, Tajur, West Java, Indonesia
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Proc & Mfg Ind Technol, KST BJ Habibie, South Tangerang, Banten, Indonesia
[6] Univ Indonesia, Fac Engn, Res Ctr Biomass Valorizat, Depok, Indonesia
[7] Univ Indonesia, Fac Engn, Dept Chem Engn, Depok, Indonesia
[8] Natl Res & Innovat Agcy BRIN, KST BJ Habibie, Res Ctr Energy Convers & Conservat, South Tangerang, Banten, Indonesia
[9] Univ Bung Hatta, Dept Chem Engn, Padang, Indonesia
[10] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung, Indonesia
关键词
CFD; combustion; Hagen-Poiseuille; multiphase flow; turbulent; RICE HUSK; PARTICLE-SIZE; TURBULENCE; BIODIESEL; DESIGN;
D O I
10.1002/apj.3137
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard k$$ k $$-epsilon$$ \upvarepsilon $$ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen-Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356-696 degrees C, and the maximum flame temperature is 1587-1697 degrees C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Simulation of Cold Flow FCC Stripper Hydrodynamics at Small Scale Using Computational Fluid Dynamics
    McKeen, Tim
    Pugsley, Todd S.
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2003, 1
  • [22] Numerical simulation of transient temperature and velocity profiles in a horizontal can during sterilization using computational fluid dynamics
    Ghani, AGA
    Farid, MM
    Chen, XD
    JOURNAL OF FOOD ENGINEERING, 2002, 51 (01) : 77 - 83
  • [23] Flow and dispersion simulation using Computational Fluid Dynamics: A Case Study for EduCity in Iskandar Malaysia
    Ng, Jo-Han
    Navarednam, Shawn
    Wong, Kang Yao
    Chong, Cheng Tung
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2018, 2019, 268
  • [24] Computational fluid dynamics investigation of bitumen residues in oil sands tailings transport in an industrial horizontal pipe
    Sontti, Somasekhara Goud
    Sadeghi, Mohsen
    Zhou, Kaiyu
    Zheng, Enzu
    Zhang, Xuehua
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [25] Analysis of Flow Field in Optimal Cyclone Separators with Hexagonal Structure Using Mathematical Models and Computational Fluid Dynamics Simulation
    Zhang, Ting
    Liu, Chunjiang
    Guo, Kai
    Liu, Hui
    Wang, Zhengchao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (01) : 351 - 365
  • [26] Integration of computational fluid dynamics with building thermal and mass flow simulation
    Negrao, COR
    ENERGY AND BUILDINGS, 1998, 27 (02) : 155 - 165
  • [27] Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling
    Wickramaarachchi, W. A. M. K. P.
    Narayana, Mahinsasa
    RENEWABLE ENERGY, 2020, 146 : 1153 - 1165
  • [28] Study of a fogging system using a computational fluid dynamics simulation
    Pinilla, J. A.
    Asuaje, M.
    Ratkovich, N.
    APPLIED THERMAL ENGINEERING, 2016, 96 : 228 - 239
  • [29] Modelling and simulation of a membrane microreactor using computational fluid dynamics
    Chasanis, Paris
    Kenig, Eugeny Y.
    Hessel, Volker
    Schmitt, Stefan
    18TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2008, 25 : 751 - 756
  • [30] Digitalized turbulent behaviors of air and rice husk flow in a vertical suspension furnace from computational fluid dynamics simulation
    Steven, Soen
    Restiawaty, Elvi
    Pasymi, Pasymi
    Fajri, Imam Mardhatillah
    Bindar, Yazid
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2022, 17 (05)