Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

被引:0
|
作者
Steven, Soen [1 ,2 ]
Hernowo, Pandit [3 ]
Sasongko, Nugroho A. [1 ,4 ]
Soedarsono, Adik A. [5 ]
Wardani, Maya L. D. [1 ]
Otivriyanti, Geby [1 ]
Soekotjo, Ernie S. A. [1 ]
Hidayatullah, Ibnu M. [6 ]
Sophiana, Intan C. [7 ]
Culsum, Neng T. U. [8 ]
Fajri, Imam M. [2 ]
Pasymi, Pasymi [9 ]
Bindar, Yazid [2 ,10 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Sustainable Prod Syst & Life Cycle Assessm, KST BJ Habibie, South Tangerang, Banten, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Biomass Technol Workshop, Sumedang 45363, Indonesia
[3] Univ Bhayangkara Jakarta Raya, Dept Chem Engn, South Jakarta, West Java, Indonesia
[4] Univ Pertahanan Republik Indonesia, Energy Secur Grad Program, Tajur, West Java, Indonesia
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Proc & Mfg Ind Technol, KST BJ Habibie, South Tangerang, Banten, Indonesia
[6] Univ Indonesia, Fac Engn, Res Ctr Biomass Valorizat, Depok, Indonesia
[7] Univ Indonesia, Fac Engn, Dept Chem Engn, Depok, Indonesia
[8] Natl Res & Innovat Agcy BRIN, KST BJ Habibie, Res Ctr Energy Convers & Conservat, South Tangerang, Banten, Indonesia
[9] Univ Bung Hatta, Dept Chem Engn, Padang, Indonesia
[10] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung, Indonesia
关键词
CFD; combustion; Hagen-Poiseuille; multiphase flow; turbulent; RICE HUSK; PARTICLE-SIZE; TURBULENCE; BIODIESEL; DESIGN;
D O I
10.1002/apj.3137
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard k$$ k $$-epsilon$$ \upvarepsilon $$ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen-Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356-696 degrees C, and the maximum flame temperature is 1587-1697 degrees C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Computational Fluid Dynamics Study of Liquid–Solid Nano-fluid Flow in Horizontal Pipe
    Zainab Yousif Shnain
    Jamal M. Ali
    Khalid A. Sukkar
    May Ali Alsaffar
    Mohammad F. Abid
    Arabian Journal for Science and Engineering, 2022, 47 : 5577 - 5585
  • [2] A Computational Fluid Dynamics Study of Liquid-Solid Nano-fluid Flow in Horizontal Pipe
    Shnain, Zainab Yousif
    Ali, Jamal M.
    Sukkar, Khalid A.
    Alsaffar, May Ali
    Abid, Mohammad F.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (05) : 5577 - 5585
  • [3] Modelling of two phase solid-liquid flow in horizontal pipe using computational fluid dynamics technique
    Singh, Jatinder Pal
    Kumar, Satish
    Mohapatra, S. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (31) : 20133 - 20137
  • [4] Computational fluid dynamic simulation of a solid biomass combustor: modelling approaches
    Miltner, Martin
    Makaruk, Aleksander
    Harasek, Michael
    Friedl, Anton
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2008, 10 (02) : 165 - 174
  • [5] Computational fluid dynamic simulation of a solid biomass combustor: modelling approaches
    Martin Miltner
    Aleksander Makaruk
    Michael Harasek
    Anton Friedl
    Clean Technologies and Environmental Policy, 2008, 10 : 165 - 174
  • [6] COMPUTATIONAL FLUID DYNAMICS SIMULATION OF OSCILLATORY FLOW IN PERIODIC MICROPORE STRUCTURES
    Stephen, Samuel
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [7] Process-Simulation and Computational Fluid Dynamics for the Development of a Novel Solid Biomass-Fired Combustor
    Kuttner, Christian
    Miltner, Martin
    Harasek, Michael
    Friedl, Anton
    PRES 2010: 13TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2010, 21 : 1093 - 1098
  • [8] Computational particle fluid dynamics simulation of biomass gasification in an entrained flow gasifier
    Timsina R.
    Thapa R.K.
    Moldestad B.M.E.
    Eikeland M.S.
    Chemical Engineering Science: X, 2021, 12
  • [9] Estimation of energy consumption and transportation characteristics for slurry flow through a horizontal straight pipe using computational fluid dynamics
    Joshi, Tanuj
    Parkash, Om
    Krishan, Gopal
    PHYSICS OF FLUIDS, 2023, 35 (05)
  • [10] Evaluation of flow characteristics in an onshore horizontal separator using computational fluid dynamics
    Acharya, Tathagata
    Casimiro, Lucio
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2020, 5 (03) : 261 - 268