Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
INTELLIGENT SYSTEMS WITH APPLICATIONS | 2024年 / 22卷
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Visualizing population structure with variational autoencoders
    Battey, C. J.
    Coffing, Gabrielle C.
    Kern, Andrew D.
    G3-GENES GENOMES GENETICS, 2021, 11 (01):
  • [42] Estimating TOA Reliability With Variational Autoencoders
    Stahlke, Maximilian
    Kram, Sebastian
    Ott, Felix
    Feigl, Tobias
    Mutschler, Christopher
    IEEE SENSORS JOURNAL, 2022, 22 (06) : 5133 - 5140
  • [43] Variational Autoencoders for Protein Structure Prediction
    Alam, Fardina Fathmiul
    Shehu, Amarda
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [44] ON A SYSTEM OF GENERALIZED NONLINEAR VARIATIONAL INEQUALITIE
    Li, Jingchang
    Guo, Zhenyu
    Liu, Zeqing
    Kang, Shin Min
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (02): : 247 - 258
  • [45] Learning the health index of complex systems using dynamic conditional variational autoencoders
    Wei, Yupeng
    Wu, Dazhong
    Terpenny, Janis
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [46] Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks
    Ahmad, Bilal
    Sun, Jun
    You, Qi
    Palade, Vasile
    Mao, Zhongjie
    BIOMEDICINES, 2022, 10 (02)
  • [47] Nonlinear System Identification Using Neural Networks Trained with Natural Gradient Descent
    Mohamed Ibnkahla
    EURASIP Journal on Advances in Signal Processing, 2003
  • [48] Nonlinear System Identification using Neural Networks and Trajectory-based Optimization
    Khodabandehlou, Hamid
    Fadali, M. Sami
    ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 579 - 586
  • [49] Nonlinear system identification using neural networks trained with natural gradient descent
    Ibnkahla, M
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2003, 2003 (12) : 1229 - 1237
  • [50] FaceVAE: Generation of a 3D Geometric Object Using Variational Autoencoders
    Park, Sungsoo
    Kim, Hyeoncheol
    ELECTRONICS, 2021, 10 (22)