Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
INTELLIGENT SYSTEMS WITH APPLICATIONS | 2024年 / 22卷
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Augmented Variational Autoencoders for Collaborative Filtering with Auxiliary Information
    Lee, Wonsung
    Song, Kyungwoo
    Moon, Il-Chul
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1139 - 1148
  • [32] MODELING WOUND HEALING USING VECTOR QUANTIZED VARIATIONAL AUTOENCODERS AND TRANSFORMERS
    Backova, Lenka
    Bengoetxea, Guillermo
    Rogalla, Svana
    Franco-Barranco, Daniel
    Solon, Jerome
    Arganda-Carreras, Ignacio
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [33] Generating Adversarial Samples on Multivariate Time Series using Variational Autoencoders
    Harford, Samuel
    Karim, Fazle
    Darabi, Houshang
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (09) : 1523 - 1538
  • [34] A Survey on Variational Autoencoders in Recommender Systems
    Liang, Shangsong
    Pan, Zhou
    Liu, Wei
    Yin, Jian
    De Rijke, Maarten
    ACM COMPUTING SURVEYS, 2024, 56 (10)
  • [35] Convolutional Variational Autoencoders for Image Clustering
    Nellas, Ioannis A.
    Tasoulis, Sotiris K.
    Plagianakos, Vassilis P.
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 695 - 702
  • [36] Nonlinear System Identification Using Temporal Convolutional Networks: A Silverbox Study
    Maroli, John M.
    Ozguner, Umit
    Redmill, Keith
    IFAC PAPERSONLINE, 2019, 52 (29): : 186 - 191
  • [37] Nonlinear System Identification Using Compressed Sensing
    Naik, Manjish
    Cochran, Douglas
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 426 - 430
  • [38] Nonlinear system identification using wavelet networks
    Liu, GP
    Billings, SA
    Kadirkamanathan, V
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 1248 - 1253
  • [39] New Methods for Explainable Variational Autoencoders
    White, Riley
    Baracat-Donovan, Brian
    Helmsen, John
    McCullough, Thomas
    ARTIFICIAL INTELLIGENCE FOR SECURITY AND DEFENCE APPLICATIONS, 2023, 12742
  • [40] Variational Autoencoders for Baseball Player Evaluation
    Converse, Geoffrey
    Arnold, Brooke
    Curi, Mariana
    Oliveira, Suely
    FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 305 - 311