Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
INTELLIGENT SYSTEMS WITH APPLICATIONS | 2024年 / 22卷
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Demonstrating MoveAE: Modifying Affective Robot Movements Using Classifying Variational Autoencoders
    Suguitan, Michael
    Gomez, Randy
    Hoffman, Guy
    HRI'20: COMPANION OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2020, : 78 - 78
  • [22] Joint Source-Channel Coding Over Additive Noise Analog Channels Using Mixture of Variational Autoencoders
    Saidutta, Yashas Malur
    Abdi, Afshin
    Fekri, Faramarz
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2000 - 2013
  • [23] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [24] Detecting One-Pixel Attacks Using Variational Autoencoders
    Alatalo, Janne
    Sipola, Tuomo
    Kokkonen, Tero
    INFORMATION SYSTEMS AND TECHNOLOGIES, WORLDCIST 2022, VOL 1, 2022, 468 : 611 - 623
  • [25] Generation of whole building renovation scenarios using variational autoencoders
    Sharif, Seyed Amirhosain
    Hammad, Amin
    Eshraghi, Pegah
    ENERGY AND BUILDINGS, 2021, 230
  • [26] Generating multiperspective process traces using conditional variational autoencoders
    Riccardo Graziosi
    Massimiliano Ronzani
    Andrei Buliga
    Chiara Di Francescomarino
    Francesco Folino
    Chiara Ghidini
    Francesca Meneghello
    Luigi Pontieri
    Process Science, 2 (1):
  • [27] Disentangling Generative Factors of Physical Fields Using Variational Autoencoders
    Jacobsen, Christian
    Duraisamy, Karthik
    FRONTIERS IN PHYSICS, 2022, 10
  • [28] Variational Inference for Nonlinear Structural Identification
    Lund, Alana
    Bilionis, Ilias
    Dyke, Shirley J.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 : 1218 - 1231
  • [29] Modelling forest fire dynamics using conditional variational autoencoders
    Ribeiro, Tiago Filipe Rodrigues
    de Silva, Fernando Jose Mateus da
    Costa, Rogerio Luis de Carvalho
    INFORMATION SYSTEMS FRONTIERS, 2024,
  • [30] Identification of nonlinear dynamic systems using modified DRNNs
    Mu Yuqiang
    Sheng Andong
    Qian Longjun
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 2395 - 2398