Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
INTELLIGENT SYSTEMS WITH APPLICATIONS | 2024年 / 22卷
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Sparse Bayesian Nonlinear System Identification Using Variational Inference
    Jacobs, William R.
    Baldacchino, Tara
    Dodd, Tony
    Anderson, Sean R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4172 - 4187
  • [2] Unsupervised Linear and Nonlinear Channel Equalization and Decoding Using Variational Autoencoders
    Caciularu, Avi
    Burshtein, David
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (03) : 1003 - 1018
  • [3] Detection of Anomalous Grapevine Berries Using Variational Autoencoders
    Miranda, Miro
    Zabawa, Laura
    Kicherer, Anna
    Strothmann, Laurenz
    Rascher, Uwe
    Roscher, Ribana
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Blind Channel Equalization using Variational Autoencoders
    Caciularu, Avi
    Burshtein, David
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2018,
  • [5] SRVAE: Super Resolution using Variational Autoencoders
    Heydari, A. Ali
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXI, 2020, 11400
  • [6] DoS and DDoS mitigation using Variational Autoencoders
    Barli, Eirik Molde
    Yazidi, Anis
    Viedma, Enrique Herrera
    Haugerud, Harek
    COMPUTER NETWORKS, 2021, 199
  • [7] Modeling and Transforming Speech using Variational Autoencoders
    Blaauw, Merlijn
    Bonada, Jordi
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 1770 - 1774
  • [8] Link Activation Using Variational Graph Autoencoders
    Jamshidiha, Saeed
    Pourahmadi, Vahid
    Mohammadi, Abbas
    Bennis, Mehdi
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2358 - 2361
  • [9] MoveAE: Modifying Affective Robot Movements Using Classifying Variational Autoencoders
    Suguitan, Michael
    Gomez, Randy
    Hoffman, Guy
    PROCEEDINGS OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI '20), 2020, : 481 - 489
  • [10] Nonlinear System Identification Using Neural Network
    Arain, Muhammad Asif
    Ayala, Helon Vicente Hultmann
    Ansari, Muhammad Adil
    EMERGING TRENDS AND APPLICATIONS IN INFORMATION COMMUNICATION TECHNOLOGIES, 2012, 281 : 122 - +