A block-coordinate approach of multi-level optimization with an application to physics-informed neural networks

被引:0
作者
Gratton, Serge [1 ]
Mercier, Valentin [2 ,3 ]
Riccietti, Elisa [4 ]
Toint, Philippe L. [5 ]
机构
[1] Univ Toulouse, INP ENSEEIHT, IRIT, Toulouse, France
[2] Univ Toulouse, ANITI, CERFACS, IRIT, Toulouse, France
[3] BRL Ingn, Nimes, France
[4] Univ Lyon, ENS Lyon Ecole Normale Super Lyon, INRIA, ENSL,UCBL,CNRS,LIP UMR, Lyon F-5668, France
[5] Univ Namur, Namur Ctr Complex Syst NaXys, Namur, Belgium
关键词
Nonlinear optimization; Multi-level methods; Partial differential equations (PDEs); Physics-informed neural networks (PINNs); Deep learning; TRUST-REGION METHODS; CONVERGENCE; ALGORITHM;
D O I
10.1007/s10589-024-00597-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Multi-level methods are widely used for the solution of large-scale problems, because of their computational advantages and exploitation of the complementarity between the involved sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity. We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and consider two different types of neural architectures, a generic feedforward network and a frequency-aware network. We show that our approach is particularly effective if coupled with these specialized architectures and that this coupling results in better solutions and significant computational savings.
引用
收藏
页码:385 / 417
页数:33
相关论文
共 48 条
  • [1] On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization
    Amaral, V. S.
    Andreani, R.
    Birgin, E. G.
    Marcondes, D. S.
    Martinez, J. M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (03) : 527 - 561
  • [2] [Anonymous], 2000, Multigrid
  • [3] Basri R, 2019, ADV NEUR IN, V32
  • [4] A globalization strategy for the multigrid solution of elliptic optimal control problems
    Borzì, A
    Kunisch, K
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (03) : 445 - 459
  • [5] Optimization Methods for Large-Scale Machine Learning
    Bottou, Leon
    Curtis, Frank E.
    Nocedal, Jorge
    [J]. SIAM REVIEW, 2018, 60 (02) : 223 - 311
  • [6] Briggs W.L., 2000, A Multigrid Tutorial, DOI DOI 10.1137/1.9780898719505
  • [7] Physics-informed neural networks (PINNs) for fluid mechanics: a review
    Cai, Shengze
    Mao, Zhiping
    Wang, Zhicheng
    Yin, Minglang
    Karniadakis, George Em
    [J]. ACTA MECHANICA SINICA, 2021, 37 (12) : 1727 - 1738
  • [8] ON HIGH-ORDER MULTILEVEL OPTIMIZATION STRATEGIES
    Calandra, Henri
    Gratton, Serge
    Riccietti, Elisa
    Vasseur, Xavier
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 307 - 330
  • [9] Cartis C., 2022, MOS SIAM SERIES OPTI
  • [10] Chung J. S., 2016, ARXIV