Mechanically Alloyed FeNi and Fe Powders Crystalline Size, Phase Formation, and Morphology: Investigation on Milling Time Impact

被引:1
作者
Boudinar, Naouaem [1 ,2 ]
Chiheb, Sofiane [1 ]
Nedjah, Nawel [1 ]
Arabi, Nour Elhouda [1 ]
Djekoun, Abdelmalik [2 ]
Bouzabata, Bouguerra [2 ]
机构
[1] Natl Higher Sch Technol & Engn ENSTI, Lab Technol Syst Energet LTSE, Annaba 23005, Algeria
[2] Univ Badji Mokhtar, Fac Sci, Lab Magnetisme & Spect Solides, Annaba 23000, Algeria
关键词
magnetic property; mechanical alloying; M & ouml; ssbauer spectroscopy; scanning electron microscopy; x-ray diffraction; X-RAY-DIFFRACTION; NI ALLOYS; NANOCRYSTALLINE POWDERS; NANOSTRUCTURE FORMATION; COFE2O4; NANOPARTICLES; MOSSBAUER; MAGNETIZATION; STRENGTH;
D O I
10.1007/s11665-024-09808-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present paper is devoted to study the structural, morphological, and magnetic behavior of Fe50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document}Ni50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document} alloy and pure Fe powder prepared by mechanical alloying. The powder has been milled with high-energy ball milling process with 24 h and 32 h for FeNi and Fe powders, respectively. The x-ray diffraction, scanning electron microscopy, M & ouml;ssbauer spectroscopy, and vibrating sample magnetometer techniques have been employed to identify the characteristics of the milled powders. The first x-ray diffraction results show that increasing milling time for pure Fe exhibits bcc-type reflections, with rapid decrease in crystallite size and a slight increase in lattice, and no other phase appears during milling, while for Fe50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document}Ni50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document} alloy, fcc phase appears after 8 h of milling with disappearance of Fe peaks. SEM and FE-SEM results have shown morphological changes are appearing in the structures where crystallite size for Fe50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document}Ni50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document} is 33.49 nm and the one for pure Fe is 15 nm. M & ouml;ssbauer spectroscopy proved that during the mechanical alloying process, the hyperfine field of Fe50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document}Ni50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{50}$$\end{document} decreases from 33 to 32 T, 31, and 29 T, respectively after 2, 8, and 24 h of milling. For the FeNi alloy, Vibrating Sample Magnetometer (VSM) at room temperature has been used, and the Hysteresis cycles has been plotted for several times of milling. The magnetic coercivity increased and the saturation magnetization decreased after the first two hours due to the morphological changes in particles leading to considerable changes in remanent magnetization and squareness ratio. These changes have disappeared during milling operations where particles sizes become equal. During FeNi milling, morphological changes lead to change the Hysteresis loops after 2 h of milling. At the end of milling, a remanent magnetization of 0.118 emu and coercivity of 32.85 G have been noted. The magnetic moment in Bohr magnetron for the alloy is 0.1338.
引用
收藏
页码:10630 / 10641
页数:12
相关论文
共 57 条
[1]   Coexisting antiferromagnetism and ferromagnetism in mechanically alloyed Fe-rich Fe-Ni alloys:: implications regarding the Fe-Ni phase diagram below 400°C [J].
Abdu, YA ;
Ericsson, T ;
Annersten, H .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 280 (2-3) :395-403
[2]   Transformations and fine magnetic structure of mechanically alloyed Fe-Ni alloys [J].
Baldokhin, YV ;
Tcherdyntsev, VV ;
Kaloshkin, SD ;
Kochetov, GA ;
Pustov, YA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 203 :313-315
[3]  
Boudinar N., 2015, ADV MATER PROCESS TE, V1, P288, DOI DOI 10.1080/2374068X.2015.1132783
[4]   Electrodeposition of Iron-Group Alloys into Nanostructured Oxide Membranes: Synthetic Challenges and Properties [J].
Cesiulis, Henrikas ;
Tsytsaru, Natalia ;
Podlaha, Elizabeth J. ;
Li, Deyang ;
Sort, Jordi .
CURRENT NANOSCIENCE, 2019, 15 (01) :84-99
[5]   Comprehensive study of MFe2O4 (M=Co, Ni, Zn) nanostructures prepared by co-precipitation route [J].
Chandekar, Kamlesh V. ;
Yadav, S. P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
[6]   One-spot fabrication and in-vivo toxicity evaluation of core-shell magnetic nanoparticles [J].
Chandekar, Kamlesh V. ;
Shkir, Mohd. ;
Alshahrani, Thamraa ;
Ibrahim, Essam H. ;
Kilany, Mona ;
Ahmad, Zubair ;
Manthrammel, M. Aslam ;
AlFaify, S. ;
Kateb, Babak ;
Kaushik, Ajeet .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 122
[7]   Relaxation phenomenon and relaxivity of cetrimonium bromide (CTAB) coated CoFe2O4 nanoplatelets [J].
Chandekar, Kamlesh V. ;
Kant, K. M. .
PHYSICA B-CONDENSED MATTER, 2018, 545 :536-548
[8]   Estimation of the spin-spin relaxation time of surfactant coated CoFe2O4 nanoparticles by electron paramagnetic resonance spectroscopy [J].
Chandekar, Kamlesh, V ;
Kant, K. Mohan .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 104 :192-205
[9]   Effect of size and shape dependent anisotropy on superparamagnetic property of CoFe2O4 nanoparticles and nanoplatelets [J].
Chandekar, Kamlesh V. ;
Kant, K. Mohan .
PHYSICA B-CONDENSED MATTER, 2017, 520 :152-163
[10]   SYNTHESIS OF NANOCRYSTALLINE PERMALLOY BY ELECTRODEPOSITION [J].
CHEUNG, C ;
PALUMBO, G ;
ERB, U .
SCRIPTA METALLURGICA ET MATERIALIA, 1994, 31 (06) :735-740