On partitioning minimum spanning trees

被引:0
|
作者
Guttmann-Beck, Nili [1 ]
Hassin, Refael [2 ]
Stern, Michal [1 ,3 ]
机构
[1] Acad Coll Tel Aviv Yaffo, Yaffo, Israel
[2] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[3] Univ Haifa, Caesarea Rothschild Inst, Haifa, Israel
关键词
Minimum spanning tree;
D O I
10.1016/j.dam.2024.07.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a set of points in the plane, and T the edge set of a minimum spanning tree of the complete graph induced by V. We prove that partitioning every edge of T into k equal parts, under Mahalanobis-norm, yields a Minimum Spanning Tree on the new set of points. We also prove that partitioning every edge of T in any symmetric way, under the Euclidean norm in 2-dimension space, yields a Minimum Spanning Tree on the new set of points. However, these properties break down under the & ell;1 or & ell;infinity norms. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [31] Minimum spanning trees with sums of ratios
    Skiscim, CC
    Palocsay, SW
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (02) : 103 - 120
  • [32] Minimum spanning trees on random networks
    Dobrin, R
    Duxbury, PM
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5076 - 5079
  • [33] The vertex degrees of minimum spanning trees
    Cieslik, D
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 125 (02) : 278 - 282
  • [34] Distributed and Autonomic Minimum Spanning Trees
    Rodrigues, Luiz A.
    Duarte, Elias P., Jr.
    Arantes, Luciana
    2014 BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 2014, : 138 - 146
  • [35] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 343 - 357
  • [36] Hierarchical clustering in minimum spanning trees
    Yu, Meichen
    Hillebrand, Arjan
    Tewarie, Prejaas
    Meier, Jil
    van Dijk, Bob
    Van Mieghem, Piet
    Stam, Cornelis Jan
    CHAOS, 2015, 25 (02)
  • [37] Distributed Minimum Degree Spanning Trees
    Dinitz, Michael
    Halldorsson, Magnus M.
    Izumi, Taisuke
    Newport, Calvin
    PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 511 - 520
  • [38] Counting minimum weight spanning trees
    Broder, AZ
    Mayr, EW
    JOURNAL OF ALGORITHMS, 1997, 24 (01) : 171 - 176
  • [39] On the Simultaneous Minimum Spanning Trees Problem
    Konecny, Matej
    Kucera, Stanislav
    Novotna, Jana
    Pekarek, Jakub
    Smolik, Martin
    Tetek, Jakub
    Topfer, Martin
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 235 - 248
  • [40] Computing minimum spanning trees with uncertainty
    Erlebach, Thomas
    Hoffmann, Michael
    Krizanc, Danny
    Mihal'ak, Matus
    Raman, Rajeev
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 277 - +