Hybrid MRT and ZF Learning for Energy-Efficient Transmission in Multi-RIS-Assisted Networks

被引:1
作者
Guo, Weixiu [1 ]
Lu, Yang [1 ]
Du, Hongyang [2 ]
Ai, Bo [3 ]
Niyato, Dusit [2 ]
Ding, Zhiguo [4 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing 100044, Peoples R China
[2] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore 639798, Singapore
[3] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[4] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
基金
中国国家自然科学基金; 新加坡国家研究基金会; 中国博士后科学基金;
关键词
Transmitters; Array signal processing; Wireless communication; Vectors; Optimization; Neural networks; MISO communication; RIS; EE; hybrid MRT and ZF; PPO; INTERFERENCE; OPTIMIZATION;
D O I
10.1109/TVT.2024.3382401
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The deep reinforcement learning-based transmission design for reconfigurable intelligent surface (RIS) assisted multiple input single output networks is investigated in this research. An energy efficiency (EE) maximization problem is formulated under constraints of the rate requirement, the power budget and the phase shift coefficient. To be adaptable to various wireless channel conditions, a novel model-based beamforming design, namely the hybrid maximum ratio transmission (MRT) and zero-forcing (ZF) scheme, is proposed in the action space. Besides, a new activation function is adopted to handle the power budget constraint. The proximal policy optimization (PPO) approach is adopted to learn the optimal policy. Numerical results validate the efficacy of the hybrid MRT and ZF scheme as well as the PPO-based algorithm.
引用
收藏
页码:12247 / 12251
页数:5
相关论文
共 18 条
  • [1] Energy Efficient Resource Allocation for IRS Assisted CoMP Systems
    Chen, Jian
    Xie, Yunhe
    Mu, Xidong
    Jia, Jie
    Liu, Yuanwei
    Wang, Xingwei
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5688 - 5702
  • [2] Balancing Fairness and Energy Efficiency in SWIPT-Based D2D Networks: Deep Reinforcement Learning Based Approach
    Han, Eun-Jeong
    Sengly, Muy
    Lee, Jung-Ryun
    [J]. IEEE ACCESS, 2022, 10 : 64495 - 64503
  • [3] Multi-Hop RIS-Empowered Terahertz Communications: A DRL-Based Hybrid Beamforming Design
    Huang, Chongwen
    Yang, Zhaohui
    Alexandropoulos, George C.
    Xiong, Kai
    Wei, Li
    Yuen, Chau
    Zhang, Zhaoyang
    Debbah, Merouane
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (06) : 1663 - 1677
  • [4] Complete characterization of the Pareto boundary for the MISO interference channel
    Jorswieck, Eduard A.
    Larsson, Erik G.
    Danev, Danyo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (10) : 5292 - 5296
  • [5] Deep Learning for Energy Efficient Beamforming in MU-MISO Networks: A GAT-Based Approach
    Li, Yuhang
    Lu, Yang
    Zhang, Ruichen
    Ai, Bo
    Zhong, Zhangdui
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (07) : 1264 - 1268
  • [6] Cooperative Beamforming Design for Multiple RIS-Assisted Communication Systems
    Ma, Xiaoyan
    Fang, Yuguang
    Zhang, Haixia
    Guo, Shuaishuai
    Yuan, Dongfeng
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10949 - 10963
  • [7] Leveraging Secondary Reflections and Mitigating Interference in Multi-IRS/RIS Aided Wireless Networks
    Nguyen, Tu V.
    Nguyen, Diep N.
    Di Renzo, Marco
    Zhang, Rui
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 502 - 517
  • [8] Schulman J, 2017, Arxiv, DOI [arXiv:1707.06347, 10.48550/arXiv.1707.06347, DOI 10.48550/ARXIV.1707.06347]
  • [9] Spectrum and Energy Efficiency Optimization in IRS-Assisted UAV Networks
    Su, Yuhua
    Pang, Xiaowei
    Chen, Shanzhi
    Jiang, Xu
    Zhao, Nan
    Yu, F. Richard
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (10) : 6489 - 6502
  • [10] Multi-RIS-Aided Wireless Systems: Statistical Characterization and Performance Analysis
    Tri Nhu Do
    Kaddoum, Georges
    Thanh Luan Nguyen
    da Costa, Daniel Benevides
    Haas, Zygmunt J.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (12) : 8641 - 8658