Divalent and multivalent cations control liquid-like assembly of poly(ADP-ribosyl)ated PARP1 into multimolecular associates in vitro

被引:2
作者
Sukhanova, Maria V. [1 ]
Anarbaev, Rashid O. [1 ]
Maltseva, Ekaterina A. [1 ]
Kutuzov, Mikhail M. [1 ]
Lavrik, Olga I. [1 ]
机构
[1] Russian Acad Sci, Inst Chem Biol & Fundamental Med, Siberian Branch, ICBFM,SB,RAS, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
DNA-POLYMERASE-BETA; BASE EXCISION-REPAIR; STRAND BREAK REPAIR; LIGASE-III; PHASE-SEPARATION; ADP-RIBOSYLATION; SHORT-PATCH; DAMAGE; XRCC1; COMPLEXES;
D O I
10.1038/s42003-024-06811-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase beta (Pol beta) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol beta-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair. Formation of biomolecular condensate via liquid-like assembly of PARylated PARP1 is driven by biogenic cations. This assembly regulates autoPARylation of PARP1, PARG-dependent hydrolysis of poly(ADP-ribose) and Pol beta-mediated DNA synthesis.
引用
收藏
页数:17
相关论文
共 111 条
  • [51] Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3 and ATP
    Kun, E
    Kirsten, E
    Mendeleyev, J
    Ordahl, CP
    [J]. BIOCHEMISTRY, 2004, 43 (01) : 210 - 216
  • [52] Coenzymatic activity of randomly broken or intact double-stranded DNAs in auto and histone H1 trans-poly(ADP-ribosylation), catalyzed by poly(ADP-ribose) polymerase (PARP I)
    Kun, E
    Kirsten, E
    Ordahl, CP
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (42) : 39066 - 39069
  • [53] PARPs' impact on base excision DNA repair
    Lavrik, Olga, I
    [J]. DNA REPAIR, 2020, 93
  • [54] Promotion of homology-directed DNA repair by polyamines
    Lee, Chih-Ying
    Su, Guan-Chin
    Huang, Wen-Yen
    Ko, Min-Yu
    Yeh, Hsin-Yi
    Chang, Geen-Dong
    Lin, Sung-Jan
    Chi, Peter
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [55] Physical and functional interaction between DNA ligase IIIα and poly(ADP-ribose) polymerase 1 in DNA single-strand break repair
    Leppard, JB
    Dong, ZW
    Mackey, ZB
    Tomkinson, AE
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (16) : 5919 - 5927
  • [56] Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation
    Leung, Anthony K. L.
    [J]. TRENDS IN CELL BIOLOGY, 2020, 30 (05) : 370 - 383
  • [57] Small molecules in regulating protein phase separation
    Li, Siyang
    Wang, Yanyan
    Lai, Luhua
    [J]. ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2023, 55 (07) : 1075 - 1083
  • [58] The role of poly ADP-ribosylation in the first wave of DNA damage response
    Liu, Chao
    Vyas, Aditi
    Kassab, Muzaffer A.
    Singh, Anup K.
    Yu, Xiaochun
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (14) : 8129 - 8141
  • [59] ADP-ribosyltransferases, an update on function and nomenclature
    Luscher, Bernhard
    Ahel, Ivan
    Altmeyer, Matthias
    Ashworth, Alan
    Bai, Peter
    Chang, Paul
    Cohen, Michael
    Corda, Daniela
    Dantzer, Francoise
    Daugherty, Matthew D.
    Dawson, Ted M.
    Dawson, Valina L.
    Deindl, Sebastian
    Fehr, Anthony R.
    Feijs, Karla L. H.
    Filippov, Dmitri V.
    Gagne, Jean-Philippe
    Grimaldi, Giovanna
    Guettler, Sebastian
    Hoch, Nicolas C.
    Hottiger, Michael O.
    Korn, Patricia
    Kraus, W. Lee
    Ladurner, Andreas
    Lehtio, Lari
    Leung, Anthony K. L.
    Lord, Christopher J.
    Mangerich, Aswin
    Matic, Ivan
    Matthews, Jason
    Moldovan, George-Lucian
    Moss, Joel
    Natoli, Gioacchino
    Nielsen, Michael L.
    Niepel, Mario
    Nolte, Friedrich
    Pascal, John
    Paschal, Bryce M.
    Pawlowski, Krzysztof
    Poirier, Guy G.
    Smith, Susan
    Timinszky, Gyula
    Wang, Zhao-Qi
    Yelamos, Jose
    Yu, Xiaochun
    Zaja, Roko
    Ziegler, Mathias
    [J]. FEBS JOURNAL, 2022, 289 (23) : 7399 - 7410
  • [60] A framework for understanding the functions of biomolecular condensates across scales
    Lyon, Andrew S.
    Peeples, William B.
    Rosen, Michael K.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (03) : 215 - 235