DomainFit: Identification of protein domains in cryo-EM maps at intermediate resolution using AlphaFold2-predicted models

被引:1
|
作者
Gao, Jerry [1 ,2 ]
Tong, Maxwell [1 ,2 ]
Lee, Chinkyu [3 ]
Gaertig, Jacek [3 ]
Legal, Thibault [1 ,2 ]
Bui, Khanh Huy [1 ,2 ]
机构
[1] McGill Univ, Fac Med & Hlth Sci, Dept Anat & Cell Biol, Montreal, PQ H3A 0C7, Canada
[2] McGill Univ, Ctr Rech Biol Struct, Montreal, PQ H3G 0B1, Canada
[3] Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
STRUCTURAL-ANALYSIS; ARCHITECTURE; REFINEMENT; COMPLEX;
D O I
10.1016/j.str.2024.04.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryoelectron microscopy (cryo-EM) has revolutionized the structural determination of macromolecular complexes. With the paradigm shift to structure determination of highly complex endogenous macromolecular complexes ex vivo and in situ structural biology, there are an increasing number of structures of native complexes. These complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 A & ring; remains challenging because side chains cannot be visualized reliably. Here, we present DomainFit, a program for semi-automated domain-level protein identification from cryo-EM maps, particularly at resolutions lower than 4 A & ring;. & ring; . By fitting domains from AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the domains and protein candidates forming the density. Using DomainFit, we identified two microtubule inner proteins, one of which contains a CCDC81 domain and is exclusively localized in the proximal region of the doublet microtubule in Tetrahymena thermophila.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Extraction of protein dynamics information from cryo-EM maps using deep learning
    Matsumoto, Shigeyuki
    Ishida, Shoichi
    Araki, Mitsugu
    Kato, Takayuki
    Terayama, Kei
    Okuno, Yasushi
    NATURE MACHINE INTELLIGENCE, 2021, 3 (02) : 153 - 160
  • [32] Extraction of protein dynamics information from cryo-EM maps using deep learning
    Shigeyuki Matsumoto
    Shoichi Ishida
    Mitsugu Araki
    Takayuki Kato
    Kei Terayama
    Yasushi Okuno
    Nature Machine Intelligence, 2021, 3 : 153 - 160
  • [33] EMatch:: an efficient method for aligning atomic resolution subunits into intermediate-resolution cryo-EM maps of large macromolecular assemblies
    Dror, Oranit
    Lasker, Keren
    Nussinov, Ruth
    Wolfson, Haim
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2007, 63 : 42 - 49
  • [34] Fitting low-resolution cryo-EM maps of proteins using constrained geometric simulations
    Jolley, Craig C.
    Wells, Stephen A.
    Frornme, Petra
    Thorpe, M. F.
    BIOPHYSICAL JOURNAL, 2008, 94 (05) : 1613 - 1621
  • [35] De novo protein structure determination from near-atomic-resolution cryo-EM maps
    Wang R.Y.-R.
    Kudryashev M.
    Li X.
    Egelman E.H.
    Basler M.
    Cheng Y.
    Baker D.
    Dimaio F.
    Nature Methods, 2015, 12 (4) : 335 - 338
  • [36] De novo protein structure determination from near-atomic-resolution cryo-EM maps
    Wang, Ray Yu-Ruei
    Kudryashev, Mikhail
    Li, Xueming
    Egelman, Edward H.
    Basler, Marek
    Cheng, Yifan
    Baker, David
    DiMaio, Frank
    NATURE METHODS, 2015, 12 (04) : 335 - U84
  • [37] Molding atomic structures into intermediate-resolution Cryo-EM density maps of ribosomal complexes using real-space refinement
    Gao, HX
    Frank, J
    STRUCTURE, 2005, 13 (03) : 401 - 406
  • [38] Building Protein Atomic Models from Cryo-EM Density Maps and Residue Co-Evolution
    Bouvier, Guillaume
    Bardiaux, Benjamin
    Pellarin, Riccardo
    Rapisarda, Chiara
    Nilges, Michael
    BIOMOLECULES, 2022, 12 (09)
  • [39] Cryo-EM Structures and AlphaFold3 Models of Histamine Receptors Reveal Diverse Ligand Binding and G Protein Bias
    Chen, Anqi
    Su, Chenxi
    Zhang, Zisu
    Zhang, Haitao
    PHARMACEUTICALS, 2025, 18 (03)
  • [40] Deciphering Protein Secondary Structures and Nucleic Acids in Cryo-EM Maps Using Deep Learning
    Cao, Hong
    He, Jiahua
    Li, Tao
    Huang, Sheng-You
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (03) : 1641 - 1652