Fast Response Room Temperature Amperometric Gas Sensors with Modified Fe-N-C Electrodes for ppb-Level H2S Detection

被引:1
|
作者
Ma, Xiuming [1 ]
Lin, Yangjuan [1 ]
Xu, Qi [1 ]
Wei, Lei [1 ]
Yang, Zheng [1 ]
Yao, Dongting [2 ]
Rong, Qian [6 ]
Zhao, Yongli [3 ]
Zhang, Chuanhui [4 ]
Li, Kun [5 ]
Wang, Chunchang [1 ]
Guo, Youmin [1 ]
机构
[1] Anhui Univ, Sch Mat Sci & Engn, Hefei 230601, Peoples R China
[2] Univ Sci & Technol China, Sch Microelect, Hefei 230022, Peoples R China
[3] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
[4] Qingdao Univ, Inst Mat Energy & Environm, Coll Mat Sci & Engn, Qingdao 266071, Peoples R China
[5] East China Inst Photoelectron ICs, Suzhou 215163, Peoples R China
[6] Micronano Sensing Technol Hefei Co Ltd, Hefei 230088, Peoples R China
关键词
H2S sensor; amperometric sensor; Fe-based catalyst; room temperature; biomarkerdetection; FUEL-CELLS; STATE; PERFORMANCE; REDUCTION;
D O I
10.1021/acsanm.4c02716
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Monitoring halitosis indirectly by detecting H2S biomarkers with gas sensors is an emerging technique that holds great promise. However, developing H2S sensors with exceptional selectivity and sensitivity, as well as a detection limit in the ppb range, remains a significant technological challenge. To address these issues, we have fabricated amperometric H2S gas sensors utilizing modified Fe-N-C catalysts as electrodes. The modified Fe-N-C catalyst obtained by heat treatment of ammonium chloride salt exhibits a higher specific surface area, improved ORR catalytic performance, and excellent stability in acidic environments, which enhance the sensitivity and durability of amperometric H2S sensors. The amperometric sensors demonstrate a sensitivity of up to 502.0 nA ppm(-1) for H2S and exhibit rapid response time with only 22.5 s for response and 9.0 s for recovery time toward 3 ppm of H2S. Moreover, they display good sensitivity (approximately 1506.0 nA at 3 ppm of H2S) and achieve a low limit of detection (LOD) of around 0.01 ppm. Additionally, the sensors exhibit excellent selectivity while being capable of detecting changes in trace amounts of H2S concentration within an exhaled breath environment. Our study presents experimental evidence demonstrating the successful detection of H2S in exhaled breath using amperometric sensors with modified Fe-N-C electrodes.
引用
收藏
页码:16649 / 16658
页数:10
相关论文
共 50 条
  • [21] In Situ Generatable and Recyclable Oxygen Vacancy-Modified Fe2O3-Decorated WO3 Nanowires with Super Stability for ppb-Level H2S Sensing
    Zhang, Sibo
    Fang, Lu
    Cao, Zhengmao
    Dai, Xinyi
    Wang, Wu
    Geng, Qin
    Zhou, Minghua
    Zhang, Shihan
    Dong, Fan
    Chen, Si
    ACS SENSORS, 2024, 9 (10): : 5500 - 5511
  • [22] Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing
    He, Lifang
    Jia, Yong
    Meng, Fanli
    Li, Minqiang
    Liu, Jinhuai
    JOURNAL OF MATERIALS SCIENCE, 2009, 44 (16) : 4326 - 4333
  • [23] Edge sites enriched vanadium doped MoS2/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection
    Sibi, S. P. Linto
    Rajkumar, M.
    Govindharaj, Kamaraj
    Mobika, J.
    Priya, V. Nithya
    Thangavelu, Rajendra Kumar Ramasamy
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (46) : 16333 - 16345
  • [24] A fast response ppb-level aniline gas sensor based on hierarchical hollow spheres of α-Fe2O3/α-MoO3 heterostructure
    Sui, Lili
    Zhang, Wenzhi
    Wang, Ping
    Zhao, Bing
    Wu, Hongyuan
    Zhao, Dan
    Dong, Guohua
    Yu, Haixia
    Xu, Yingming
    Huo, Lihua
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 346
  • [25] One-step preparation of flexible rGO/ZnO gas sensors for ppm-level H2S detection
    Tao, Zhigang
    Wang, Binchao
    Bian, Hongxia
    Luo, Xiaofeng
    Guo, Mengyao
    Cui, Yanjun
    Feng, Li
    Tu, Peng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (27)
  • [26] CsPbBr3 Quantum Dot Modified In2O3 Nanofibers for Effective Detection of ppb-Level HCHO at Room Temperature under UV Illumination
    Liu, Miao
    Song, Peng
    Wang, Qi
    Yan, Mei
    ACS SENSORS, 2024, 9 (11): : 6040 - 6050
  • [27] An Affordable Amperometric Gas Sensor Based on Polyvinylidene Fluoride Solid-State Electrolyte for Highly Selective Detection of ppm-Level H2 at Room Temperature
    Zhang, Yue
    Lin, Yangjuan
    Yang, Zheng
    Rong, Qian
    Yao, Dongting
    Li, Kun
    Zhang, Chuanhui
    Zheng, Jun
    Wang, Chunchang
    Guo, Youmin
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (20): : 12451 - 12458
  • [28] Ppb-Level Triethylamine Gas Sensors Based on Palladium Nanoparticles Modified Flower-Like In2O3 Grown on rGO Nanosheets Operating at Low Temperature
    Meng, Fanli
    Wang, Huai
    Yuan, Zhenyu
    Zhang, Renze
    Li, Jin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [29] Mesoporous and Encapsulated In2O3/Ti3C2T x Schottky Heterojunctions for Rapid and ppb-Level NO2 Detection at Room Temperature
    Fan, Chao
    Yang, Jianhua
    Mehrez, Jaafar Abdul-Aziz
    Zhang, Yongwei
    Quan, Wenjing
    Wu, Jian
    Liu, Xue
    Zeng, Min
    Hu, Nantao
    Wang, Tao
    Tian, Bing
    Fan, Xiaopeng
    Yang, Zhi
    ACS SENSORS, 2024, 9 (05) : 2372 - 2382
  • [30] Advances in inorganic conductive material- and organic conductive polymer-based resistive gas sensors for room-temperature H2S detection
    Leilei Wang
    Jungwook Choi
    Micro and Nano Systems Letters, 13 (1)