Universal superdiffusion of random walks in media with embedded fractal networks of low diffusivity

被引:1
作者
Reis, Fabio D. A. Aarao [1 ]
Voller, Vaughan R. [2 ,3 ]
机构
[1] Univ Fed Fluminense, Inst Fis, Ave Litoranea S-N, BR-24210340 Niteroi, RJ, Brazil
[2] Univ Minnesota, Dept Civil Environm & Geoengn, 500 Pillsbury Dr SE, Minneapolis, MN 55455 USA
[3] Univ Minnesota, St Anthony Falls Lab, 500 Pillsbury Dr SE, Minneapolis, MN 55455 USA
关键词
ANOMALOUS DIFFUSION; INFILTRATION; DIMENSION; MODELS;
D O I
10.1103/PhysRevE.110.L022102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Diffusion in composite media with high contrasts between diffusion coefficients in fractal sets of inclusions and in their embedding matrices is modeled by lattice random walks (RWs) with probabilities p < 1 of hops from fractal sites and 1 from matrix sites. Superdiffusion is predicted in time intervals that depend on p and with diffusion exponents that depend on the dimensions of matrix (E) and fractal (D-F) as v = 1/(2 + D-F - E). This contrasts with the nonuniversal subdiffusion of RWs confined to fractal media. Simulations with four fractals show the anomaly at several time decades for p less than or similar to 10(-3) and the crossover to the asymptotic normal diffusion. These results show that superdiffusion can be observed in isotropic RWs with finite moments of hop length distributions and allow the estimation of the dimension of the inclusion set from the diffusion exponent. However, displacements within single trajectories have normal scaling, which shows transient ergodicity breaking.
引用
收藏
页数:7
相关论文
共 58 条
  • [1] Scaling relations in the diffusive infiltration in fractals
    Aarao Reis, F. D. A.
    [J]. PHYSICAL REVIEW E, 2016, 94 (05)
  • [2] Models of infiltration into homogeneous and fractal porous media with localized sources
    Aarao Reis, Fabio D. A.
    Voller, Vaughan R.
    [J]. PHYSICAL REVIEW E, 2019, 99 (04)
  • [3] Adler P., 1992, Porous Media: Geometry and Transports
  • [4] Revisiting random walks in fractal media: On the occurrence of time discrete scale invariance
    Bab, M. A.
    Fabricius, G.
    Albano, Ezequiel V.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (04)
  • [5] Formation factors for a class of deterministic models of pre-fractal pore-fracture networks
    Balankin, Alexander S.
    Ramirez-Joachin, Juan
    Gonzalez-Lopez, Gabriela
    Gutierrez-Hernandez, Sebastian
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 162
  • [6] The topological Hausdorff dimension and transport properties of Sierpinski carpets
    Balankin, Alexander S.
    [J]. PHYSICS LETTERS A, 2017, 381 (34) : 2801 - 2808
  • [7] Scaling corrections:: site percolation and Ising model in three dimensions
    Ballesteros, HG
    Fernández, LA
    Martín-Mayor, V
    Sudupe, AM
    Parisi, G
    Ruiz-Lorenzo, JJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01): : 1 - 13
  • [8] Geometry-Induced Superdiffusion in Driven Crowded Systems
    Benichou, Olivier
    Bodrova, Anna
    Chakraborty, Dipanjan
    Illien, Pierre
    Law, Adam
    Mejia-Monasterio, Carlos
    Oshanin, Gleb
    Voituriez, Raphael
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (26)
  • [9] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [10] Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity
    Boving, TB
    Grathwohl, P
    [J]. JOURNAL OF CONTAMINANT HYDROLOGY, 2001, 53 (1-2) : 85 - 100