Analysis of Residual Post-Impact Compressive Strength of Composite Laminates Under Hygrothermal Conditions

被引:2
作者
Guan, Yue [1 ]
Yan, Shi [1 ]
Chen, Xixi [1 ]
Zhang, Yuxuan [1 ]
Wang, Xin [1 ]
Li, Hanhua [2 ]
Zhao, Yun [3 ]
Zhai, Junjun [4 ]
机构
[1] Harbin Univ Sci & Technol, Dept Engn Mech, Harbin 150000, Peoples R China
[2] Beijing Inst Astronaut Syst Engn, Dept Engn Mech, Beijing 100076, Peoples R China
[3] Bldg 1,Lane 288,Shengrong Rd,Pudong New Area, Shanghai 200120, Peoples R China
[4] North China Inst Aerosp Engn, Coll Aeronaut & Astronaut, Langfang 065000, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite laminates; Hygrothermal aging; Finite element simulation; Failure mode; Post-impact compressive properties; LOW-VELOCITY IMPACT; CARBON-FIBER; MECHANICAL-PROPERTIES; DAMAGE; TEMPERATURE; ABSORPTION; MOISTURE; BEHAVIOR; GLASS; LOAD;
D O I
10.1007/s10443-024-10258-5
中图分类号
TB33 [复合材料];
学科分类号
摘要
This paper is a continuation study of the residual compressive strength of composite laminates after impact under hygrothermal conditions. Two carbon fibre/epoxy plywood specimens with different lay-ups ([45/-45/0/0/45/0/0/0/90/-45/0]s and [45/-45/0/90/0 /0/0/0/90/0/-45/45]s) were investigated, The materials were subjected to 500 h, 1000 h and 2000 h of service time in a climatic chamber at a temperature of 60 degrees C and 100% relative humidity, followed by low-velocity post-impact compression using an energy level of 15 J. Experimental and numerical simulations are used to study the residual compressive strength and damage extension of the material. Using the ultrasonic C-scan technique, the internal damage of the specimens was scanned, and the damage evolution in impact and compression tests was analysed. Damage evolution in impact and compression tests was investigated using ultrasonic C-scanning to scan the internal damage of the specimens. The strain change maps of the specimens during compression are studied using the Digital Imaging (DIC) technique. Vumat subroutine coded in Fortran and used in commercial software (ABAQUS) for numerical simulation. To study the effect of damage extension of materials on post-impact and post-impact compression for different hygrothermal times. It was found that the residual compressive strength depended on factors such as the material's hygrothermal time and the initial defects in the plywood; that the 90 degrees and +/- 45 degrees fibre orientations played a positive role in the material's hygrothermal; that the hygrothermal made the material's damage more catastrophic; and that the buckling of hygrothermal specimens was not only at the impact position, but was also reflected at the edges. In CAI testing, it was found that the hygrothermally treated specimens were damaged similarly to the desiccation treated specimens, but that compression resulted in a flexural position affected by hygrothermal, which determined the material CAI strength.
引用
收藏
页数:21
相关论文
共 50 条
[31]   Analysis of the Residual Compressive Strength of Three-Dimensional Four-Directional Braided Carbon fiber Composites Under Simultaneous Impact Conditions [J].
Niu, Yongxin ;
Yan, Shi ;
Meng, Zixiang ;
Cai, Songming .
APPLIED COMPOSITE MATERIALS, 2025,
[32]   Post-impact static and cyclic flexural characterisation of hemp fibre reinforced laminates [J].
De Rosa, Igor Maria ;
Dhakal, Hom Nath ;
Santulli, Carlo ;
Sarasini, Fabrizio ;
Zhang, Zhong Yi .
COMPOSITES PART B-ENGINEERING, 2012, 43 (03) :1382-1396
[33]   Effects of voids on residual tensile strength after impact of hygrothermal conditioned CFRP laminates [J].
Zhang, Aying ;
Lu, Haibao ;
Zhang, Dongxing .
COMPOSITE STRUCTURES, 2013, 95 :322-327
[34]   Low-velocity impact (LVI) and post-impact fatigue properties of GLARE laminates with holes [J].
Chen, Yajun ;
Yang, Jinchuan ;
Peng, Jianshu ;
Ji, Chunming ;
Wang, Bing .
INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167
[35]   A micromechanical approach to evaluate the post-impact residual stiffness of woven composites [J].
Colombo, Chiara ;
Vergani, Laura .
JOURNAL OF COMPOSITE MATERIALS, 2016, 50 (07) :971-984
[36]   Compression after impact strength of repaired GFRP composite laminates under repeated impact loading [J].
Andrew, J. Jefferson ;
Arumugam, V. ;
Saravanakumar, K. ;
Dhakal, H. N. ;
Santulli, C. .
COMPOSITE STRUCTURES, 2015, 133 :911-920
[37]   Residual strength of composite laminates with a centre crack under tension [J].
Potti, PKG ;
Rao, BN ;
Srivastava, VK .
ADVANCED COMPOSITE MATERIALS, 2000, 9 (02) :131-143
[38]   Analytical study on low compressive strength of composite laminates with impact damage [J].
Suemasu, Hiroshi ;
Ichiki, Makoto .
COMPOSITE STRUCTURES, 2013, 104 :169-175
[39]   Numerical simulation of bolted joint composite laminates under low-velocity impact [J].
Guo, Zhangxin ;
Li, Zhonggui ;
Zhu, Hao ;
Cui, Junjie ;
Li, Diansen ;
Li, Yongcun ;
Luan, Yunbo .
MATERIALS TODAY COMMUNICATIONS, 2020, 23
[40]   Post-Impact Fatigue Damage Analysis of Quasi Isotropic CFRP Laminates through Infrared Thermography [J].
Prakash, Raghu V. ;
John, Mathew .
FRATTURA ED INTEGRITA STRUTTURALE, 2019, 13 (49) :536-546