Improving Shale Stability through the Utilization of Graphene Nanopowder and Modified Polymer-Based Silica Nanocomposite in Water-Based Drilling Fluids

被引:0
|
作者
Ospanov, Yerlan Kanatovich [1 ]
Kudaikulova, Gulzhan Abdullaevna [1 ]
Moldabekov, Murat Smanovich [1 ]
Zhaksylykova, Moldir Zhumabaevna [1 ]
机构
[1] Satbayev Univ, Dept Petr Engn, Alma Ata 050013, Kazakhstan
关键词
drilling fluids; polymers; silica nanocomposite; graphene nanopowder; WELLBORE-STABILITY; PERFORMANCE;
D O I
10.3390/pr12081676
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Shale formations present significant challenges to traditional drilling fluids due to fluid infiltration, cuttings dispersion, and shale swelling, which can destabilize the wellbore. While oil-based drilling fluids (OBM) effectively address these concerns about their environmental impact, their cost limits their widespread use. Recently, nanomaterials (NPs) have emerged as a promising approach in drilling fluid technology, offering an innovative solution to improve the efficiency of water-based drilling fluids (WBDFs) in shale operations. This study evaluates the potential of utilizing modified silica nanocomposite and graphene nanopowder to formulate a nanoparticle-enhanced water-based drilling fluid (NP-WBDF). The main objective is to investigate the impact of these nanoparticle additives on the flow characteristics, filtration efficiency, and inhibition properties of the NP-WBDF. In this research, a silica nanocomposite was successfully synthesized using emulsion polymerization and analyzed using FTIR, PSD, and TEM techniques. Results showed that the silica nanocomposite exhibited a unimodal particle size distribution ranging from 38 nm to 164 nm, with an average particle size of approximately 72 nm. Shale samples before and after interaction with the graphene nanopowder WBDF and the silica nanocomposite WBDF were analyzed using scanning electron microscopy (SEM). The NP-WBM underwent evaluation through API filtration tests (LTLP), high-temperature/high-pressure (HTHP) filtration tests, and rheological measurements conducted with a conventional viscometer. Experimental results showed that the silica nanocomposite and the graphene nanopowder effectively bridged and sealed shale pore throats, demonstrating superior inhibition performance compared to conventional WBDF. Post adsorption, the shale surface exhibited increased hydrophobicity, contributing to enhanced stability. Overall, the silica nanocomposite and the graphene nanopowder positively impacted rheological performance and provided favorable filtration control in water-based drilling fluids.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Hydrophobic modified polymer based silica nanocomposite for improving shale stability in water-based drilling fluids
    Xu, Jian-gen
    Qiu, Zhengsong
    Zhao, Xin
    Huang, Weian
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 153 : 325 - 330
  • [2] Hyperbranched polymer nanocomposite as a potential shale stabilizer in water-based drilling fluids for improving wellbore stability
    He, Zou
    Yang, Yang
    Qi, Jie
    Lin, Xingyu
    Wang, Na
    Wang, Li
    Dai, Huimin
    Lu, Hongsheng
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 395
  • [3] Improving shale hydration inhibition with hydrophobically modified graphene oxide in water-based drilling fluids
    Xu, Jian-gen
    Wang, Liang
    Hu, Hao
    Cao, Duanshuai
    Li, Sihang
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 413
  • [4] Synthesis of Novel Polymer Nanocomposite for Water-based Drilling Fluids
    Ahmad, Hafiz Mudaser
    Kamal, Muhammad Shahzad
    Hussain, S. M. Shakil
    Al-Harthil, Mamdouh
    PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-35), 2020, 2205
  • [5] Study of graphene oxide to stabilize shale in water-based drilling fluids
    Wang, Kai
    Jiang, Guancheng
    Li, Xinliang
    Luckham, Paul F.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 606
  • [6] An amphoteric polymer as a shale borehole stabilizer in water-based drilling fluids
    Zhang, Xianmin
    Jiang, Guancheng
    Dong, Tengfei
    Wang, Le
    Li, Xinliang
    Wang, Guoshuai
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 170 : 112 - 120
  • [7] Polyoxyalkyleneamine as shale inhibitor in water-based drilling fluids
    Qu, Yuanzhi
    Lai, Xiaoqing
    Zou, Laifang
    Su, Yi'nao
    APPLIED CLAY SCIENCE, 2009, 44 (3-4) : 265 - 268
  • [8] Improving the shale stability with nano-silica grafted with hyperbranched polyethyleneimine in water-based drilling fluid
    Zhong, Hanyi
    Gao, Xin
    Zhang, Xin
    Qiu, Zhengsong
    Zhao, Chong
    Zhang, Xianbin
    Jin, Junbin
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 83 (83)
  • [9] Investigation of the inhibition mechanism of polymer/nano-silica composite as shale inhibitor in water-based drilling fluids
    Liu, Fei
    Zhang, Chengxiang
    Li, Xiaqing
    Zhang, Zhaoxiang
    Wang, Xuewu
    Dai, Xiaodong
    Zhou, Mengyue
    Liu, Qingxue
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 636
  • [10] Mechanistic insights into Janus silica nanoparticles as shale inhibitors in water-based drilling fluids
    Lv, Kaihe
    Dai, Jiajun
    Sun, Jinsheng
    Jia, Han
    Zhang, Chao
    Huang, Xianbin
    Shang, Jundi
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 705