From Characterization to Discovery: Artificial Intelligence, Machine Learning and High-Throughput Experiments for Heterogeneous Catalyst Design

被引:42
作者
Benavides-Hernandez, Jorge [1 ]
Dumeignil, Franck [1 ]
机构
[1] Univ Lille, Univ Artois, Cent Lille, CNRS,UMR 8181,UCCS,Unite Catalyse & Chim Solide, F-59000 Lille, France
关键词
artificial intelligence; machine learning; high-throughput experimentation; heterogeneous catalysts; catalyst design; deep learning; optimization; high-throughput screening; FEATURE-SELECTION METHODS; ENTROPY ALLOY CATALYSTS; SURFACE WALKING METHOD; GAS SHIFT REACTION; RAMAN-SPECTROSCOPY; VIBRATIONAL SPECTROSCOPY; STRUCTURE PREDICTION; CO2; REDUCTION; OPTIMIZATION; INFORMATICS;
D O I
10.1021/acscatal.3c06293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review paper delves into synergistic integration of artificial intelligence (AI) and machine learning (ML) with high-throughput experimentation (HTE) in the field of heterogeneous catalysis, presenting a broad spectrum of contemporary methodologies and innovations. We methodically segmented the text into three core areas: catalyst characterization, data-driven exploitation, and data-driven discovery. In the catalyst characterization part, we outline current and prospective techniques used for HTE and how AI-driven strategies can streamline or automate their analysis. The data-driven exploitation part is divided into themes, strategies, and techniques that offer flexibility for either modular application or creation of customized solutions. In the data-driven exploration part we present applications that enable exploration of areas outside the experimentally tested chemical space, incorporating a section on computational methods for identifying new prospects. The review concludes by addressing the current limitations within the field and suggesting possible avenues for future research.
引用
收藏
页码:11749 / 11779
页数:31
相关论文
共 243 条
[1]   Designing catalysts via evolutionary-based optimization techniques [J].
Agharezaei, Parastoo ;
Sahu, Tanay ;
Shock, Jonathan ;
O'Brien, Paul G. ;
Ghuman, Kulbir Kaur .
COMPUTATIONAL MATERIALS SCIENCE, 2023, 216
[2]   Tuning the Structure of Pt Nanoparticles through Support Interactions: An in Situ Polarized X-ray Absorption Study Coupled with Atomistic Simulations [J].
Ahmadi, M. ;
Timoshenko, J. ;
Behafarid, F. ;
Roldan Cuenya, Beatriz .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (16) :10666-10676
[3]   Golem: an algorithm for robust experiment and process optimization [J].
Aldeghi, Matteo ;
Hase, Florian ;
Hickman, Riley J. ;
Tamblyn, Isaac ;
Aspuru-Guzik, Alan .
CHEMICAL SCIENCE, 2021, 12 (44) :14792-14807
[4]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[5]  
[Anonymous], 2022, PNG to learn from Chinese artificial intelligence technology
[6]   Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning [J].
Artrith, Nongnuch ;
Lin, Zhexi ;
Chen, Jingguang G. .
ACS CATALYSIS, 2020, 10 (16) :9438-9444
[7]   High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model [J].
Bai, Xuefeng ;
Li, Yi ;
Xie, Yabo ;
Chen, Qiancheng ;
Zhang, Xin ;
Li, Jian-Rong .
GREEN ENERGY & ENVIRONMENT, 2025, 10 (01) :132-138
[8]   Deep learning for visualization and novelty detection in large X-ray diffraction datasets [J].
Banko, Lars ;
Maffettone, Phillip M. ;
Naujoks, Dennis ;
Olds, Daniel ;
Ludwig, Alfred .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[9]  
Bartolotti L.J., 1996, REV COMP CHEM, V7, P187, DOI DOI 10.1002/9780470125847.CH4
[10]   Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation** [J].
Batchelor, Thomas A. A. ;
Loeffler, Tobias ;
Xiao, Bin ;
Krysiak, Olga A. ;
Strotkoetter, Valerie ;
Pedersen, Jack K. ;
Clausen, Christian M. ;
Savan, Alan ;
Li, Yujiao ;
Schuhmann, Wolfgang ;
Rossmeisl, Jan ;
Ludwig, Alfred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :6932-6937