Efficient Sparse Bayesian Learning Model for Image Reconstruction Based on Laplacian Hierarchical Priors and GAMP

被引:0
|
作者
Jin, Wenzhe [1 ]
Lyu, Wentao [1 ]
Chen, Yingrou [1 ]
Guo, Qing [2 ]
Deng, Zhijiang [3 ]
Xu, Weiqiang [1 ]
机构
[1] Zhejiang Sci Tech Univ, Key Lab Intelligent Text & Flexible Interconnect Z, Hangzhou 310018, Peoples R China
[2] Zhejiang Tech Innovat Serv Ctr, Hangzhou 310007, Peoples R China
[3] Fox Ess Co Ltd, Wenzhou 325024, Peoples R China
基金
中国国家自然科学基金;
关键词
sparse Bayesian learning; generalized approximate message passing; Laplacian hierarchical priors;
D O I
10.3390/electronics13153038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel sparse Bayesian learning (SBL) method for image reconstruction. We integrate the generalized approximate message passing (GAMP) algorithm and Laplacian hierarchical priors (LHP) into a basic SBL model (called LHP-GAMP-SBL) to improve the reconstruction efficiency. In our SBL model, the GAMP structure is used to estimate the mean and variance without matrix inversion in the E-step, while LHP is used to update the hyperparameters in the M-step.The combination of these two structures further deepens the hierarchical structures of the model. The representation ability of the model is enhanced so that the reconstruction accuracy can be improved. Moreover, the introduction of LHP accelerates the convergence of GAMP, which shortens the reconstruction time of the model. Experimental results verify the effectiveness of our method.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Variational Bayesian and Generalized Approximate Message Passing-Based Sparse Bayesian Learning Model for Image Reconstruction
    Dong, Jingyi
    Lyu, Wentao
    Zhou, Di
    Xu, Weiqiang
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2328 - 2332
  • [2] Sparse image reconstruction using sparse priors
    Ting, Michael
    Raich, Raviv
    Hero, Alfred O., III
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1261 - +
  • [3] Sparse Bayesian Learning with hierarchical priors for duct mode identification of tonal noise
    Yu, Liang
    Bai, Yue
    Wang, Ran
    Gao, Kang
    Jiang, Weikang
    JOURNAL OF SOUND AND VIBRATION, 2023, 560
  • [4] Generalized Sparse Bayesian Learning and Application to Image Reconstruction
    Glaubitz, Jan
    Gelb, Anne
    Song, Guohui
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (01) : 262 - 284
  • [5] Image Reconstruction Algorithm for Electrical Impedance Tomography Based on Block Sparse Bayesian Learning
    Liu, Shengheng
    Jia, Jiabin
    Yang, Yunjie
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 267 - 271
  • [6] Sparse Bayesian Learning Using Adaptive LASSO Priors
    Bai Z.-L.
    Shi L.-M.
    Sun J.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (05): : 1193 - 1208
  • [7] Direction-of-Arrival Estimation via Sparse Bayesian Learning Exploiting Hierarchical Priors with Low Complexity
    Li, Ninghui
    Zhang, Xiaokuan
    Lv, Fan
    Zong, Binfeng
    SENSORS, 2024, 24 (07)
  • [8] A Bayesian Lasso based sparse learning model
    Helgoy, Ingvild M.
    Li, Yushu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [9] An off-grid direction-of-arrival estimator based on sparse Bayesian learning with three-stage hierarchical Laplace priors
    Li, Ninghui
    Zhang, Xiao-Kuan
    Zong, Binfeng
    Lv, Fan
    Xu, JiaHua
    Wang, Zhaolong
    SIGNAL PROCESSING, 2024, 218
  • [10] HIERARCHICAL BAYESIAN FORMULATION OF SPARSE SIGNAL RECOVERY ALGORITHMS USING SCALE MIXTURE PRIORS
    Giri, Ritwik
    Rao, Bhaskar D.
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 67 - 71