Machine Learning Assisted Tensile Strength Prediction and Optimization of Ti Alloy

被引:1
作者
Fatriansyah, Jaka Fajar [1 ,2 ]
Aqila, Muhamad Rafi [1 ]
Suhariadi, Iping [3 ]
Federico, Andreas [1 ]
Ajiputro, Dzaky Iman [1 ]
Pradana, Agrin Febrian [1 ]
Andreano, Yossi [1 ]
Rizky, Muhammad Ali Yafi [1 ]
Dhaneswara, Donanta [1 ,2 ]
Lockman, Zainovia [4 ]
Hur, Su-Mi [5 ]
机构
[1] Univ Indonesia, Dept Met & Mat Engn, Fac Engn, Depok 16424, Jawa Barat, Indonesia
[2] Univ Indonesia, Fac Engn, AMRC, Depok 16424, Jawa Barat, Indonesia
[3] Bina Nusantara Univ, Fac Engn, Dept Ind Engn, Jakarta 11480, Indonesia
[4] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Engn Campus, Perai 14300, Penang, Malaysia
[5] Chonnam Natl Univ, Sch Polymer Sci & Engn, Gwangju 61186, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Metals; Titanium alloys; Mathematical models; Predictive models; Data models; Machine learning; Nearest neighbor methods; Tensile stress; Ti alloy; mechanical property; tensile strength; MECHANICAL-PROPERTIES; REGRESSION; TITANIUM; DEFORMATION;
D O I
10.1109/ACCESS.2024.3450511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding the link between material composition and mechanical properties is crucial for material design and optimization. This study utilized four machine learning models-K-Nearest Neighbor (KNN), Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN)-to predict tensile strength and examine how alloying composition affects the tensile strength of titanium (Ti) alloys. The first three models are considered simpler machine learning approaches, while the ANN is a deep learning method. The models were trained on publicly available experimental data, using fifteen alloying elements as inputs: Al, C, Cr, Cu, H, Fe, Mo, Ni, Nb, N, O, Si, Sn, V, and Zr. A new framework was proposed for evaluating the best model, which involves running several ML models, assessing metrics such as R2 value, absolute percentage error distribution, and stability of R2 through multiple trials, and finally comparing model accuracy using the Diebold-Mariano test. The evaluation showed that all four models achieved good accuracy, with R2 values above 80%. However, the framework identified KNN as the best model due to its low error rate, the narrowest range in absolute percentage error, and more stable R2 value. Additionally, the feature importance analysis highlighted how alloying elements impact tensile strength, revealing both linear and non-linear correlations. It was found that increasing Ti content and using alloying elements with an atomic radius smaller than Ti affect the tensile strength. This study illustrates the potential of machine learning in material screening and design for Ti alloys.
引用
收藏
页码:119660 / 119670
页数:11
相关论文
共 46 条
  • [31] Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy
    Stepanov, N.
    Tikhonovsky, M.
    Yurchenko, N.
    Zyabkin, D.
    Klimova, M.
    Zherebtsov, S.
    Efimov, A.
    Salishchev, G.
    [J]. INTERMETALLICS, 2015, 59 : 8 - 17
  • [32] Metrics for evaluating the performance of machine learning based automated valuation models
    Steurer, Miriam
    Hill, Robert J.
    Pfeifer, Norbert
    [J]. JOURNAL OF PROPERTY RESEARCH, 2021, 38 (02) : 99 - 129
  • [33] Prediction accuracy of Random Forest, XGBoost, LightGBM, and artificial neural network for shear resistance of post-installed anchors
    Suenaga, D.
    Takase, Y.
    Abe, T.
    Orita, G.
    Ando, S.
    [J]. STRUCTURES, 2023, 50 : 1252 - 1263
  • [34] A machine learning approach for corrosion small datasets
    Sutojo, Totok
    Rustad, Supriadi
    Akrom, Muhamad
    Syukur, Abdul
    Shidik, Guruh Fajar
    Dipojono, Hermawan Kresno
    [J]. NPJ MATERIALS DEGRADATION, 2023, 7 (01)
  • [35] Tatachar AV., 2021, Int. J. Innov. Technol. Exploring Eng., V8, P853
  • [36] Tkachenko R., 2018, E EUR J ENTERP TECHN, V3, P23, DOI [10.15587/1729-4061.2018.134319, DOI 10.15587/1729-4061.2018.134319]
  • [37] Machine Learning Prediction of Turning Precision Using Optimized XGBoost Model
    Wang, Cheng-Chi
    Kuo, Ping-Huan
    Chen, Guan-Ying
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [38] Wang X., 2022, METALS, V12, DOI [10.3390/met12061018, DOI 10.3390/MET12061018]
  • [39] Mechanical behavior of TiAl alloys
    Xiang, HengGao
    Chen, Yang
    Qi, ZhiXiang
    Zheng, Gong
    Chen, FengRui
    Cao, YueDe
    Liu, Xu
    Zhou, Bing
    Chen, Guang
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (09) : 2457 - 2480
  • [40] Sn Content Effects on Microstructure, Mechanical Properties and Tribological Behavior of Biomedical Ti-Nb-Sn Alloys Fabricated by Powder Metallurgy
    Xie, Fangxia
    Yang, Hao
    Huang, Jiabing
    Yu, Jinghu
    He, Xueming
    [J]. METALS, 2022, 12 (02)