High-fidelity and high-speed wavefront shaping by leveraging complex media

被引:3
作者
Yu, Li-Yu [1 ]
You, Sixian [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 27期
关键词
FOCUSING LIGHT; 3-DIMENSIONAL MICROFABRICATION; SCATTERING MEDIA; PHASE; TIME; MODULATION; MICROSCOPY; AMPLITUDE; SPACE; IMAGE;
D O I
10.1126/sciadv.adn2846
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-precision light manipulation is crucial for delivering information through complex media. However, existing spatial light modulation devices face a fundamental speed-fidelity tradeoff. Digital micromirror devices have emerged as a promising candidate for high-speed wavefront shaping but at the cost of compromised fidelity due to the limited control degrees of freedom. Here, we leverage the sparse-to-random transformation through complex media to overcome the dimensionality limitation of spatial light modulation devices. We demonstrate that pattern compression by sparsity-constrained wavefront optimization allows sparse and robust wavefront representations in complex media, improving the projection fidelity without sacrificing frame rate, hardware complexity, or optimization time. Our method is generalizable to different pattern types and complex media, supporting consistent performance with up to 89% and 126% improvements in projection accuracy and speckle suppression, respectively. The proposed optimization framework could enable high-fidelity high-speed wavefront shaping through different scattering media and platforms without changes to the existing holographic setups, facilitating a wide range of physics and real-world applications.
引用
收藏
页数:12
相关论文
共 85 条
  • [1] High-speed label-free multimode-fiber-based compressive imaging beyond the diffraction limit
    Abrashitova, Ksenia
    Amitonova, Lyubov, V
    [J]. OPTICS EXPRESS, 2022, 30 (07) : 10456 - 10469
  • [2] Fluorescent wavefront shaping using incoherent iterative phase conjugation
    Aizik, Dror
    Gkioulekas, Ioannis
    Levin, Anat
    [J]. OPTICA, 2022, 9 (07): : 746 - 754
  • [3] Focusing light through random photonic media by binary amplitude modulation
    Akbulut, D.
    Huisman, T. J.
    van Putten, E. G.
    Vos, W. L.
    Mosk, A. P.
    [J]. OPTICS EXPRESS, 2011, 19 (05): : 4017 - 4029
  • [4] Endo-microscopy beyond the Abbe and Nyquist limits
    Amitonova, Lyubov V.
    de Boer, Johannes F.
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [5] Compressive imaging through a multimode fiber
    Amitonova, Lyubov, V
    de Boer, Johannes F.
    [J]. OPTICS LETTERS, 2018, 43 (21) : 5427 - 5430
  • [6] High speed, complex wavefront shaping using the digital micro-mirror device
    Ayoub, Ahmed B.
    Psaltis, Demetri
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix
    Boniface, Antoine
    Dong, Jonathan
    Gigan, Sylvain
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] Compressed sensing in fluorescence microscopy
    Calisesi, Gianmaria
    Ghezzi, Alberto
    Ancora, Daniele
    D'Andrea, Cosimo
    Valentini, Gianluca
    Farina, Andrea
    Bassi, Andrea
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 168 : 66 - 80
  • [9] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [10] Near-optimal signal recovery from random projections: Universal encoding strategies?
    Candes, Emmanuel J.
    Tao, Terence
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5406 - 5425