Deep learning architectures for data-driven damage detection in nonlinear dynamic systems under random vibrations

被引:2
|
作者
Joseph, Harrish [1 ]
Quaranta, Giuseppe [1 ]
Carboni, Biagio [1 ]
Lacarbonara, Walter [1 ]
机构
[1] Sapienza Univ Rome, Dept Struct & Geotech Engn, Via Eudossiana 18, I-00184 Rome, Italy
关键词
Autoencoder; Convolutional neural network; Damage detection; Deep learning; Generative adversarial network; Structural health monitoring; VOLTERRA SERIES; IDENTIFICATION; DIAGNOSIS; NETWORKS;
D O I
10.1007/s11071-024-10270-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The primary goal of structural health monitoring is to detect damage at its onset before it reaches a critical level. In the present work an in-depth investigation addresses deep learning applied to data-driven damage detection in nonlinear dynamic systems. In particular, autoencoders and generative adversarial networks are implemented leveraging on 1D convolutional neural networks. The onset of damage is detected in the investigated nonlinear dynamic systems by exciting random vibrations of varying intensity, without prior knowledge of the system or the excitation and in unsupervised manner. The comprehensive numerical study is conducted on dynamic systems exhibiting different types of nonlinear behavior. An experimental application related to a magneto-elastic nonlinear system is also presented to corroborate the conclusions.
引用
收藏
页码:20611 / 20636
页数:26
相关论文
共 50 条
  • [1] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [2] Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review
    Azimi, Mohsen
    Eslamlou, Armin Dadras
    Pekcan, Gokhan
    SENSORS, 2020, 20 (10)
  • [3] Fault Detection for Nonlinear Dynamic Systems With Consideration of Modeling Errors: A Data-Driven Approach
    Chen, Hongtian
    Li, Linlin
    Shang, Chao
    Huang, Biao
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4259 - 4269
  • [4] Data-driven identification for nonlinear dynamic systems
    Lyshevski, Sergey Edward
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2024, 44 (02) : 166 - 171
  • [5] Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure
    Alemu, Yohannes L.
    Lahmer, Tom
    Walther, Christian
    ENG, 2024, 5 (02): : 629 - 656
  • [6] Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures
    Noveski, Gjorgji
    Eftimov, Tome
    Mishev, Kostadin
    Simjanoska, Monika
    IEEE ACCESS, 2021, 9 : 148710 - 148720
  • [7] Enhanced data-driven Damage Detection for Structural Health Monitoring Systems
    Chaabane, Marwa
    Ben Hamida, Ahmed
    Mansouri, Majdi
    Nounou, Hazem
    Nounou, Mohamed
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [8] Data-Driven Deep Learning for OTFS Detection br
    Gong, Yi
    Li, Qingyu
    Meng, Fanke
    Li, Xinru
    Xu, Zhan
    CHINA COMMUNICATIONS, 2023, 20 (01) : 88 - 101
  • [9] Data-Driven Nonlinear Modal Analysis: A Deep Learning Approach
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 229 - 231
  • [10] Towards probabilistic data-driven damage detection in SHM using sparse Bayesian learning scheme
    Wang, Qi-Ang
    Dai, Yang
    Ma, Zhan-Guo
    Ni, Yi-Qing
    Tang, Jia-Qi
    Xu, Xiao-Qi
    Wu, Zi-Yan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (11)