Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion

被引:1
|
作者
Wu, Bao [1 ]
Xiong, Xingzhong [2 ]
Wang, Yong [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Automat & Informat Engn, Yibin 644000, Peoples R China
[2] Sichuan Univ Sci & Engn, Artificial Intelligence Key Lab Sichuan Prov, Yibin 644000, Peoples R China
关键词
semantic segmentation; feature fusion; feature extraction; pyramid pooling; complex street scenes; NETWORK;
D O I
10.3390/electronics13183699
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In computer vision, the task of semantic segmentation is crucial for applications such as autonomous driving and intelligent surveillance. However, achieving a balance between real-time performance and segmentation accuracy remains a significant challenge. Although Fast-SCNN is favored for its efficiency and low computational complexity, it still faces difficulties when handling complex street scene images. To address this issue, this paper presents an improved Fast-SCNN, aiming to enhance the accuracy and efficiency of semantic segmentation by incorporating a novel attention mechanism and an enhanced feature extraction module. Firstly, the integrated SimAM (Simple, Parameter-Free Attention Module) increases the network's sensitivity to critical regions of the image and effectively adjusts the feature space weights across channels. Additionally, the refined pyramid pooling module in the global feature extraction module captures a broader range of contextual information through refined pooling levels. During the feature fusion stage, the introduction of an enhanced DAB (Depthwise Asymmetric Bottleneck) block and SE (Squeeze-and-Excitation) attention optimizes the network's ability to process multi-scale information. Furthermore, the classifier module is extended by incorporating deeper convolutions and more complex convolutional structures, leading to a further improvement in model performance. These enhancements significantly improve the model's ability to capture details and overall segmentation performance. Experimental results demonstrate that the proposed method excels in processing complex street scene images, achieving a mean Intersection over Union (mIoU) of 71.7% and 69.4% on the Cityscapes and CamVid datasets, respectively, while maintaining inference speeds of 81.4 fps and 113.6 fps. These results indicate that the proposed model effectively improves segmentation quality in complex street scenes while ensuring real-time processing capabilities.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Small Object Augmentation of Urban Scenes for Real-Time Semantic Segmentation
    Yang, Zhengeng
    Yu, Hongshan
    Feng, Mingtao
    Sun, Wei
    Lin, Xuefei
    Sun, Mingui
    Mao, Zhi-Hong
    Mian, Ajmal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5175 - 5190
  • [22] FBRNet: a feature fusion and border refinement network for real-time semantic segmentation
    Qu, Shaojun
    Wang, Zhuo
    Wu, Jie
    Feng, Yuewen
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [23] FBRNet: a feature fusion and border refinement network for real-time semantic segmentation
    ShaoJun Qu
    Zhuo Wang
    Jie Wu
    YueWen Feng
    Pattern Analysis and Applications, 2024, 27
  • [24] A Multi-level Feature Fusion Network for Real-time Semantic Segmentation
    Wang, Lu
    Xu, Qinzhen
    Xiong, Zixiang
    Huang, Yongming
    Yang, Luxi
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [25] Context and Spatial Feature Calibration for Real-Time Semantic Segmentation
    Li, Kaige
    Geng, Qichuan
    Wan, Maoxian
    Cao, Xiaochun
    Zhou, Zhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5465 - 5477
  • [26] Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes
    Su, Xu
    Li, Lihong
    Xiao, Jiejie
    Wang, Pengtao
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (03) : 562 - 572
  • [27] Real-time efficient semantic segmentation network based on improved ASPP and parallel fusion module in complex scenes
    Peng Ding
    Huaming Qian
    Yipeng Zhou
    Shuya Yan
    Shibao Feng
    Shuang Yu
    Journal of Real-Time Image Processing, 2023, 20
  • [28] Real-time semantic segmentation network based on parallel atrous convolution for short-term dense concatenate and attention feature fusion
    Wu, Lijun
    Qiu, Shangdong
    Chen, Zhicong
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (03)
  • [29] RTSNet: Real-Time Semantic Segmentation Network For Outdoor Scenes
    Ma, Mingyu
    Zou, Fengshan
    Xu, Fang
    Song, Jilai
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 659 - 664
  • [30] ESNET: EDGE-BASED SEGMENTATION NETWORK FOR REAL-TIME SEMANTIC SEGMENTATION IN TRAFFIC SCENES
    Lyu, Haoran
    Fu, Huiyuan
    Hu, Xiaojun
    Liu, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1855 - 1859