Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion

被引:1
|
作者
Wu, Bao [1 ]
Xiong, Xingzhong [2 ]
Wang, Yong [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Automat & Informat Engn, Yibin 644000, Peoples R China
[2] Sichuan Univ Sci & Engn, Artificial Intelligence Key Lab Sichuan Prov, Yibin 644000, Peoples R China
关键词
semantic segmentation; feature fusion; feature extraction; pyramid pooling; complex street scenes; NETWORK;
D O I
10.3390/electronics13183699
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In computer vision, the task of semantic segmentation is crucial for applications such as autonomous driving and intelligent surveillance. However, achieving a balance between real-time performance and segmentation accuracy remains a significant challenge. Although Fast-SCNN is favored for its efficiency and low computational complexity, it still faces difficulties when handling complex street scene images. To address this issue, this paper presents an improved Fast-SCNN, aiming to enhance the accuracy and efficiency of semantic segmentation by incorporating a novel attention mechanism and an enhanced feature extraction module. Firstly, the integrated SimAM (Simple, Parameter-Free Attention Module) increases the network's sensitivity to critical regions of the image and effectively adjusts the feature space weights across channels. Additionally, the refined pyramid pooling module in the global feature extraction module captures a broader range of contextual information through refined pooling levels. During the feature fusion stage, the introduction of an enhanced DAB (Depthwise Asymmetric Bottleneck) block and SE (Squeeze-and-Excitation) attention optimizes the network's ability to process multi-scale information. Furthermore, the classifier module is extended by incorporating deeper convolutions and more complex convolutional structures, leading to a further improvement in model performance. These enhancements significantly improve the model's ability to capture details and overall segmentation performance. Experimental results demonstrate that the proposed method excels in processing complex street scene images, achieving a mean Intersection over Union (mIoU) of 71.7% and 69.4% on the Cityscapes and CamVid datasets, respectively, while maintaining inference speeds of 81.4 fps and 113.6 fps. These results indicate that the proposed model effectively improves segmentation quality in complex street scenes while ensuring real-time processing capabilities.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Exploring Scale-Aware Features for Real-Time Semantic Segmentation of Street Scenes
    Li, Kaige
    Geng, Qichuan
    Zhou, Zhong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3575 - 3587
  • [22] Real-Time High-Performance Semantic Image Segmentation of Urban Street Scenes
    Dong, Genshun
    Yan, Yan
    Shen, Chunhua
    Wang, Hanzi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3258 - 3274
  • [23] Lightweight and efficient feature fusion real-time semantic segmentation network
    Zhong, Jie
    Chen, Aiguo
    Jiang, Yizhang
    Sun, Chengcheng
    Peng, Yuheng
    IMAGE AND VISION COMPUTING, 2025, 154
  • [24] Real-Time Semantic Segmentation of Point Clouds Based on an Attention Mechanism and a Sparse Tensor
    Wang, Fei
    Yang, Yujie
    Wu, Zhao
    Zhou, Jingchun
    Zhang, Weishi
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [25] EFRNet: Edge feature refinement network for real-time semantic segmentation of driving scenes
    Hou, Zhiqiang
    Qu, Minjie
    Cheng, Minjie
    Ma, Sugang
    Wang, Yunchen
    Yang, Xiaobao
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [26] Deep Multi-Branch Aggregation Network for Real-Time Semantic Segmentation in Street Scenes
    Weng, Xi
    Yan, Yan
    Dong, Genshun
    Shu, Chang
    Wang, Biao
    Wang, Hanzi
    Zhang, Ji
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17224 - 17240
  • [27] Real-Time Semantic Segmentation With Fast Attention
    Hu, Ping
    Perazzi, Federico
    Heilbron, Fabian Caba
    Wang, Oliver
    Lin, Zhe
    Saenko, Kate
    Sclaroff, Stan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (01) : 263 - 270
  • [28] FBRNet: a feature fusion and border refinement network for real-time semantic segmentation
    Qu, Shaojun
    Wang, Zhuo
    Wu, Jie
    Feng, Yuewen
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [29] FBRNet: a feature fusion and border refinement network for real-time semantic segmentation
    ShaoJun Qu
    Zhuo Wang
    Jie Wu
    YueWen Feng
    Pattern Analysis and Applications, 2024, 27
  • [30] A Multi-level Feature Fusion Network for Real-time Semantic Segmentation
    Wang, Lu
    Xu, Qinzhen
    Xiong, Zixiang
    Huang, Yongming
    Yang, Luxi
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,