A Structure Modality Enhanced Multimodal Imaging Method for Electrical Impedance Tomography Pressure Distribution Measurement

被引:0
|
作者
Chen, Huaijin [1 ,2 ]
Wang, Zhanwei [1 ,2 ]
Langlois, Kevin [1 ,2 ]
Verstraten, Tom [1 ]
Vanderborght, Bram [1 ,2 ]
机构
[1] Vrije Univ Brussel, BruBot, B-1050 Brussels, Belgium
[2] imec, B-1050 Brussels, Belgium
关键词
Sensors; Electrical impedance tomography; Pressure sensors; Conductivity; Pressure measurement; Sensitivity; Robot sensing systems; Electrical impedance tomography (EIT); multimodal sensor fusion; pressure distribution measurement; RECONSTRUCTION; PATTERN; SENSOR; TOUCH;
D O I
10.1109/TIM.2024.3436112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical impedance tomography (EIT) based pressure distribution sensors have the advantages of a simple structure and the ability to continuously measure pressure over a large area, making it a promising solution for large-scale artificial robotic skin. However, achieving high spatial resolution reconstruction of pressure distribution with EIT pressure sensors is challenging because the positions, sizes, and magnitudes of the pressure of the compressed areas are deeply coupled and mutually influenced in the EIT reconstructed results. To address this issue, a novel multimodal EIT pressure distribution measurement method is proposed. In this method, a structure modality EIT pressure sensor is designed to provide independent position and size information of the compressed areas to complement the pressure distribution measured using a normal EIT pressure sensor. A multimodal convolutional neural network (CNN) was designed to fuse the multimodal EIT sensors. The simulations and experiments demonstrate that the proposed multimodal EIT sensor outperforms the regular single-modality EIT sensor.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A direct sampling method for electrical impedance tomography
    Chow, Yat Tin
    Ito, Kazufumi
    Zou, Jun
    INVERSE PROBLEMS, 2014, 30 (09)
  • [42] A New Regularization Method for Electrical Impedance Tomography
    Han, Bing
    Xu, Yanbin
    Dong, Feng
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 595 - 600
  • [43] New Regularization Method in Electrical Impedance Tomography
    侯卫东
    莫玉龙
    Journal of Shanghai University, 2002, (03) : 211 - 215
  • [44] The factorization method for cracks in electrical impedance tomography
    Jun Guo
    Xianghe Zhu
    Computational and Applied Mathematics, 2021, 40
  • [45] Measurement Methods and Image Reconstruction in Electrical Impedance Tomography
    Filipowicz, Stefan F.
    Rymarczyk, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (06): : 247 - 250
  • [46] Study on human brain impedance imaging using electrical impedance tomography
    Xu, GZ
    Dong, GY
    Yan, WL
    Yang, QX
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS, 2000, : 378 - 380
  • [47] A Parametric Level set Method for Imaging Multiphase Conductivity Using Electrical Impedance Tomography
    Liu, Dong
    Zhao, Yuxi
    Khambampati, Anil Kumar
    Seppanen, Aku
    Du, Jiangfeng
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (04): : 552 - 561
  • [48] Resistivity imaging of binary mixture using weighted Landweber method in electrical impedance tomography
    Kim, Bong Seok
    Kim, Kyung Youn
    FLOW MEASUREMENT AND INSTRUMENTATION, 2017, 53 : 39 - 48
  • [49] Fetal Imaging with Dynamic Electrical Impedance Tomography Technique
    Konki, Sravan Kumar
    Khambampati, Anil Kumar
    Kim, Kyung Youn
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (01) : 23 - 31
  • [50] Coregistration of electrical impedance tomography and magnetic resonance imaging
    Halter, R. J.
    Manwaring, P.
    Hartov, A.
    Paulsen, K. D.
    13TH INTERNATIONAL CONFERENCE ON ELECTRICAL BIOIMPEDANCE AND THE 8TH CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY 2007, 2007, 17 : 416 - 419