A multiple imputation method using population information

被引:0
|
作者
Fushiki, Tadayoshi [1 ]
机构
[1] Niigata Univ, Fac Educ, Niigata, Japan
关键词
Calibration; missing data; multiple imputation; population information; INFERENCE;
D O I
10.1080/03610926.2024.2395880
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple imputation (MI) is effectively used to deal with missing data when the missing mechanism is missing at random. However, MI may not be effective when the missing mechanism is not missing at random (NMAR). In such cases, additional information is required to obtain an appropriate imputation. Pham et al. (2019) proposed the calibrated-delta adjustment method, which is a multiple imputation method using population information. It provides appropriate imputation in two NMAR settings. However, the calibrated-delta adjustment method has two problems. First, it can be used only when one variable has missing values. Second, the theoretical properties of the variance estimator have not been provided. This article proposes a multiple imputation method using population information that can be applied when several variables have missing values. The proposed method is proven to include the calibrated-delta adjustment method. It is shown that the proposed method provides a consistent estimator for the parameter of the imputation model in an NMAR situation. The asymptotic variance of the estimator obtained by the proposed method and its estimator are also given.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Multiple Imputation-Revision Ensemble Classification with Neighborhood Information
    Zhu, Xianyuan
    Yan, Yuanting
    Zhang, Yanping
    Computer Engineering and Applications, 2023, 59 (23) : 125 - 135
  • [22] Evaluation of imputation performance of multiple reference panels in a Pakistani population
    Xu, Jiayi
    Liu, Dongjing
    Hassan, Arsalan
    Genovese, Giulio
    Cote, Alanna C.
    Fennessy, Brian
    Cheng, Esther
    Charney, Alexander W.
    Knowles, James A.
    Ayub, Muhammad
    Peterson, Roseann E.
    Bigdeli, Tim B.
    Huckins, Laura M.
    HUMAN GENETICS AND GENOMICS ADVANCES, 2025, 6 (02):
  • [23] Noise correction using Bayesian multiple imputation
    Van Hulse, Jason
    Khoshgoftaar, Taghi M.
    Seiffert, Chris
    Zhao, Lili
    IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 478 - +
  • [24] Bootstrap inference when using multiple imputation
    Schomaker, Michael
    Heumann, Hristian
    STATISTICS IN MEDICINE, 2018, 37 (14) : 2252 - 2266
  • [25] Multiple imputation using nearest neighbor methods
    Faisal, Shahla
    Tutz, Gerhard
    INFORMATION SCIENCES, 2021, 570 : 500 - 516
  • [26] A multiple-phenotype imputation method for genetic studies
    Andrew Dahl
    Valentina Iotchkova
    Amelie Baud
    Åsa Johansson
    Ulf Gyllensten
    Nicole Soranzo
    Richard Mott
    Andreas Kranis
    Jonathan Marchini
    Nature Genetics, 2016, 48 : 466 - 472
  • [27] Application of Multiple Imputation Method for Missing Data Estimation
    Ser, Gazel
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2012, 25 (04): : 869 - 873
  • [28] A multiple-phenotype imputation method for genetic studies
    Dahl, Andrew
    Iotchkova, Valentina
    Baud, Amelie
    Johansson, Asa
    Gyllensten, Ulf
    Soranzo, Nicole
    Mott, Richard
    Kranis, Andreas
    Marchini, Jonathan
    NATURE GENETICS, 2016, 48 (04) : 466 - +
  • [29] A new multiple imputation method for bounded missing values
    Kwon, Tae Yeon
    Park, Yousung
    STATISTICS & PROBABILITY LETTERS, 2015, 107 : 204 - 209
  • [30] Multiple imputation using multivariate gh transformations
    He, Yulei
    Raghunathan, Trivellore E.
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (10) : 2177 - 2198