On spanning laceability of bipartite graphs

被引:0
作者
Sabir, Eminjan [1 ]
Meng, Jixiang [1 ]
Qiao, Hongwei [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
关键词
Bipartite graph; Biclosure; Hamiltonicity; Spanning disjoint paths; DISJOINT PATH COVERS; CONNECTIVITY;
D O I
10.1016/j.amc.2024.128919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (A, B; E) be a balanced bipartite graph with bipartition (A, B) . For a positive integer t and two vertices a e A and b e B , a bi- (t; a, b)-path-system of G is a subgraph S consisting of t internally disjoint (a, b)-paths. Moreover, a bi- (t; a, b)-path-system is called a spanning bi- (t; a, b)- path-system if V(S) spans V(G) . If there is a spanning bi- (t; a, b)-path-system between any a e A and b e B then G is said to be spanning t-laceable. In this paper, we provide a synthesis of sufficient conditions for a bipartite graph to be spanning laceable in terms of extremal number of edges, bipartite independence number, bistability, and biclosure. As a byproduct, a classic result of Moon and Moser (1963) [9] is extended.
引用
收藏
页数:7
相关论文
共 19 条
[1]   BICLOSURE AND BISTABILITY IN A BALANCED BIPARTITE GRAPH [J].
AMAR, D ;
FAVARON, O ;
MAGO, P .
JOURNAL OF GRAPH THEORY, 1995, 20 (04) :513-529
[2]  
Bondy J.A., 2008, Graph Theory
[3]   ON THE BIPARTITE INDEPENDENCE NUMBER OF A BALANCED BIPARTITE GRAPH [J].
FAVARON, O ;
MAGO, P ;
ORDAZ, O .
DISCRETE MATHEMATICS, 1993, 121 (1-3) :55-63
[4]   Super spanning connectivity of split-star networks [J].
Li, Jing ;
Li, Xujing ;
Cheng, Eddie .
INFORMATION PROCESSING LETTERS, 2021, 166
[5]   On spanning connected graphs [J].
Lin, Cheng-Kuan ;
Huang, Hua-Min ;
Tan, Jimmy J. M. ;
Hsu, Lih-Hsing .
DISCRETE MATHEMATICS, 2008, 308 (07) :1330-1333
[6]   On the spanning connectivity of graphs [J].
Lin, Cheng-Kuan ;
Huang, Hua-Min ;
Hsu, Lih-Hsing .
DISCRETE MATHEMATICS, 2007, 307 (02) :285-289
[7]   The spanning laceability on the faulty bipartite hypercube-like networks [J].
Lin, Cheng-Kuan ;
Teng, Yuan-Hsiang ;
Tan, Jimmy J. M. ;
Hsu, Lih-Hsing ;
Marusic, Dragan .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) :8095-8103
[8]   The super connectivity of the pancake graphs and the super laceability of the star graphs [J].
Lin, CK ;
Huang, HM ;
Hsu, LH .
THEORETICAL COMPUTER SCIENCE, 2005, 339 (2-3) :257-271
[9]   ON HAMILTONIAN BIPARTITE GRAPHS [J].
MOON, J ;
MOSER, L .
ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (03) :163-&
[10]   Disjoint path covers joining prescribed source and sink sets in interval graphs [J].
Park, Jung-Heum ;
Kim, Jae-Hoon ;
Lim, Hyeong-Seok .
THEORETICAL COMPUTER SCIENCE, 2019, 776 :125-137