One-Photon-Interference Quantum Secure Direct Communication

被引:4
作者
Li, Xiang-Jie [1 ,2 ]
Wang, Min [3 ]
Pan, Xing-Bo [1 ,2 ]
Zhang, Yun-Rong [1 ,2 ]
Long, Gui-Lu [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[4] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[5] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum secure direct communication; measurement-device-independent quantum communication; security analysis; CAPACITY;
D O I
10.3390/e26090811
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum secure direct communication (QSDC) is a quantum communication paradigm that transmits confidential messages directly using quantum states. Measurement-device-independent (MDI) QSDC protocols can eliminate the security loopholes associated with measurement devices. To enhance the practicality and performance of MDI-QSDC protocols, we propose a one-photon-interference MDI QSDC (OPI-QSDC) protocol which transcends the need for quantum memory, ideal single-photon sources, or entangled light sources. The security of our OPI-QSDC protocol has also been analyzed using quantum wiretap channel theory. Furthermore, our protocol could double the distance of usual prepare-and-measure protocols, since quantum states sending from adjacent nodes are connected with single-photon interference, which demonstrates its potential to extend the communication distance for point-to-point QSDC.
引用
收藏
页数:18
相关论文
共 57 条
[1]   Fundamental Limits on the Capacities of Bipartite Quantum Interactions [J].
Baeuml, Stefan ;
Das, Siddhartha ;
Wilde, Mark M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (25)
[2]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[3]   Quantum privacy and quantum wiretap channels [J].
N. Cai ;
A. Winter ;
R. W. Yeung .
Problems of Information Transmission, 2004, 40 (4) :318-336
[4]   Continuous-Variable Quantum Secure Direct Communication Based on Gaussian Mapping [J].
Cao, Zhengwen ;
Wang, Lei ;
Liang, Kexin ;
Chai, Geng ;
Peng, Jinye .
PHYSICAL REVIEW APPLIED, 2021, 16 (02)
[5]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[6]   Measurement-device-independent quantum key distribution with hyper-encoding [J].
Cui, Zheng-Xia ;
Zhong, Wei ;
Zhou, Lan ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (11)
[7]   Simple security proof of twin-field type quantum key distribution protocol [J].
Curty, Marcos ;
Azuma, Koji ;
Lo, Hoi-Kwong .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[8]   Universal Limitations on Quantum Key Distribution over a Network [J].
Das, Siddhartha ;
Bauml, Stefan ;
Winczewski, Marek ;
Horodecki, Karol .
PHYSICAL REVIEW X, 2021, 11 (04)
[9]   Bidirectional quantum key distribution protocol with practical faint laser pulses [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2004, 70 (01) :012311-1
[10]   Secure direct communication with a quantum one-time pad [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2004, 69 (05) :052319-1