How Well Do AI-Enabled Decision Support Systems Perform in Clinical Settings?

被引:1
作者
Susanto, Anindya Pradipta [1 ,2 ]
Lyell, David [1 ]
Widyantoro, Bambang [2 ]
Berkovsky, Shlomo [1 ]
Magrabi, Farah [1 ]
机构
[1] Macquarie Univ, Australian Inst Hlth Innovat, N Ryde, NSW, Australia
[2] Univ Indonesia, Fac Med, Jakarta, Indonesia
来源
MEDINFO 2023 - THE FUTURE IS ACCESSIBLE | 2024年 / 310卷
关键词
Clinical decision support; machine learning; performance; COMPUTER-AIDED DETECTION; ARTIFICIAL-INTELLIGENCE; IMPLEMENTATION;
D O I
10.3233/SHTI230971
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-world performance of machine learning (ML) models is crucial for safely and effectively embedding them into clinical decision support (CDS) systems. We examined evidence about the performance of contemporary ML-based CDS in clinical settings. A systematic search of four bibliographic databases identified 32 studies over a 5-year period. The CDS task, ML type, ML method and real-world performance was extracted and analysed. Most ML-based CDS supported image recognition and interpretation (n=12; 38%) and risk assessment (n=9; 28%). The majority used supervised learning (n=28; 88%) to train random forests (n=7; 22%) and convolutional neural networks (n=7; 22%). Only 12 studies reported real-world performance using heterogenous metrics; and performance degraded in clinical settings compared to model validation. The reporting of model performance is fundamental to ensuring safe and effective use of ML-based CDS in clinical settings. There remain opportunities to improve reporting.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 41 条
[1]   Evaluation of machine learning solutions in medicine [J].
Antoniou, Tony ;
Mamdani, Muhammad .
CANADIAN MEDICAL ASSOCIATION JOURNAL, 2021, 193 (36) :E1425-E1429
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]   Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services A Randomized Clinical Trial [J].
Blomberg, Stig Nikolaj ;
Christensen, Helle Collatz ;
Lippert, Freddy ;
Ersboll, Annette Kjaer ;
Torp-Petersen, Christian ;
Sayre, Michael R. ;
Kudenchuk, Peter J. ;
Folke, Fredrik .
JAMA NETWORK OPEN, 2021, 4 (01)
[4]   Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study [J].
Brennan, Meghan ;
Puri, Sahil ;
Ozrazgat-Baslanti, Tezcan ;
Feng, Zheng ;
Ruppert, Matthew ;
Hashemighouchani, Haleh ;
Momcilovic, Petar ;
Li, Xiaolin ;
Wang, Daisy Zhe ;
Bihorac, Azra .
SURGERY, 2019, 165 (05) :1035-1045
[5]   Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: a prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals [J].
Burdick, Hoyt ;
Pino, Eduardo ;
Gabel-Comeau, Denise ;
McCoy, Andrea ;
Gu, Carol ;
Roberts, Jonathan ;
Le, Sidney ;
Slote, Joseph ;
Pellegrini, Emily ;
Green-Saxena, Abigail ;
Hoffman, Jana ;
Das, Ritankar .
BMJ HEALTH & CARE INFORMATICS, 2020, 27 (01)
[6]   Development, Implementation, and Evaluation of a Personalized Machine Learning Algorithm for Clinical Decision Support: Case Study With Shingles Vaccination [J].
Chen, Ji ;
Chokshi, Sara ;
Hegde, Roshini ;
Gonzalez, Javier ;
Iturrate, Eduardo ;
Aphinyanaphongs, Yin ;
Mann, Devin .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (04)
[7]   The Last Mile: Where Artificial Intelligence Meets Reality [J].
Coiera, Enrico .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2019, 21 (11)
[8]   A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice* [J].
Giannini, Heather M. ;
Ginestra, Jennifer C. ;
Chivers, Corey ;
Draugelis, Michael ;
Hanish, Asaf ;
Schweickert, William D. ;
Fuchs, Barry D. ;
Meadows, Laurie ;
Lynch, Michael ;
Donnelly, Patrick J. ;
Pavan, Kimberly ;
Fishman, Neil O. ;
Hanson, C. William, III ;
Umscheid, Craig A. .
CRITICAL CARE MEDICINE, 2019, 47 (11) :1485-1492
[9]   Clinician Perception of a Machine Learning-Based Early Warning System Designed to Predict Severe Sepsis and Septic Shock* [J].
Ginestra, Jennifer C. ;
Giannini, Heather M. ;
Schweickert, William D. ;
Meadows, Laurie ;
Lynch, Michael J. ;
Pavan, Kimberly ;
Chivers, Corey J. ;
Draugelis, Michael ;
Donnelly, Patrick J. ;
Fuchs, Barry D. ;
Umscheid, Craig A. .
CRITICAL CARE MEDICINE, 2019, 47 (11) :1477-1484
[10]   Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study [J].
Gong, Dexin ;
Wu, Lianlian ;
Zhang, Jun ;
Mu, Ganggang ;
Shen, Lei ;
Liu, Jun ;
Wang, Zhengqiang ;
Zhou, Wei ;
An, Ping ;
Huang, Xu ;
Jiang, Xiaoda ;
Li, Yanxia ;
Wan, Xinyue ;
Hu, Shan ;
Chen, Yiyun ;
Hu, Xiao ;
Xu, Youming ;
Zhu, Xiaoyun ;
Li, Suqin ;
Yao, Liwen ;
He, Xinqi ;
Chen, Di ;
Huang, Li ;
Wei, Xiao ;
Wang, Xuemei ;
Yu, Honggang .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (04) :352-361