Enhanced ordered growth of Ni-Co LDH nanosheets on N-doped carbon through nitrogen configuration tuning for high-performance asymmetric supercapacitors

被引:1
|
作者
Wang, Jiebin [1 ]
Zhang, Qian [1 ,2 ]
Zhang, Yude [1 ,2 ]
Li, Yan [1 ]
Gao, Rongjun [1 ]
Li, Ru [1 ]
Li, Yuanyuan [1 ]
Zhang, Baimei [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Sch Chem & Chem Engn, Henan Key Lab Coal Green Convers, Jiaozuo 454000, Peoples R China
[2] Collaborat Innovat Ctr Coal Work Safety Henan Prov, Jiaozuo 454000, Peoples R China
[3] Henan Polytech Univ, Sch Civil Engn, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Nickel-cobalt LDH; Nitrogen configuration tuning; Assembled growth; Pyridine-N enriched carbon; Asymmetric supercapacitors; LAYERED DOUBLE HYDROXIDE; ENERGY-STORAGE; ELECTRODE MATERIAL; MICROSPHERES; FABRICATION; COMPOSITES; GRAPHENE; FOAM;
D O I
10.1016/j.est.2024.113180
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The introduction of carbon is considered a promising strategy to improve the cycling stability of Nickel-cobalt layered double hydroxide (NC-LDH) in supercapacitors. While, the construction of uniform and strong interface bonding is a major challenge for this strategy. Herein, a pyridinic N enriched carbon (PNC) is prepared by simple heat treatment of popcorn to adjust the nitrogen configuration and used as a substrate to load NC-LDH. The pyridinic N is favored to form chemical bonds of N-O-Ni/Co with NC-LDH and enhance the ordered growth of NC-LDH on the PNC surface. This unique NC-LDH/PNC hybrid benefits much more active sites and improved structure stability. Furthermore, the electrical conductivity and charge transfer ability are significantly enhanced due to the sufficient coupling between NC-LDH and PNC. As a consequence, the NC-LDH/PNC demonstrates a much higher capacitance of 877.5C/g (2193 F g- 1) at 1 A g- 1 and an enhanced rate of 62.4% at a greater current density of 20 A g- 1 compared with those of NC-LDH (624.5C g- 1 and 48.3 %). The NC-LDH/PNC-based asymmetric supercapacitor (ASC) obtains a remarkable specific capacitance of 343 F g- 1 at 1 A g- 1 and energy density of 121.9 Wh kg- 1 at 798.2 W kg- 1. More importantly, this NC-LDH/PNC based ASC exhibits significantly enhanced cycle stability of 90.2 % after 4000 cycles, compared with that of NC-LDH-based ASC (56.5 %).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] N-doped cellulose-based carbon aerogels with a honeycomb-like structure for high-performance supercapacitors
    E, Lei
    Sun, Jiaming
    Gan, Wentao
    Wu, Zhenwei
    Xu, Zhou
    Xu, Lifei
    Ma, Chunhui
    Li, Wei
    Liu, Shouxin
    JOURNAL OF ENERGY STORAGE, 2021, 38
  • [22] Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors
    Liu, Chao
    Wang, Jing
    Li, Jiansheng
    Zeng, Mengli
    Luo, Rui
    Shen, Jinyou
    Sun, Xiuyun
    Han, Weiqing
    Wang, Lianjun
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (11) : 7194 - 7204
  • [23] Core-shell N-doped carbon spheres for high-performance supercapacitors
    Wang, Yinling
    Dong, Shengye
    Wu, Xiaoqin
    Liu, Xiaowang
    Li, Maoguo
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (16) : 9673 - 9682
  • [24] Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor
    Liu, Yuexin
    Wang, Yanzhong
    Shi, Chenjing
    Chen, Yanjun
    Li, Dan
    He, Zhenfeng
    Wang, Chao
    Guo, Li
    Ma, Jianmin
    CARBON, 2020, 165 : 129 - 138
  • [25] Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors
    Wang, Qun
    Qin, Bin
    Zhang, Xiaohua
    Xie, Xiaoling
    Jin, Li'e
    Cao, Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) : 19653 - 19663
  • [26] Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors
    Iamprasertkun, Pawin
    Krittayavathananon, Atiweena
    Seubsai, Anusorn
    Chanlek, Narong
    Kidkhunthod, Pinit
    Sangthong, Winyoo
    Maensiri, Santi
    Yimnirun, Rattikorn
    Nilmoung, Sukanya
    Pannopard, Panvika
    Ittisanronnachai, Somlak
    Kongpatpanich, Kanokwan
    Limtrakul, Jumras
    Sawangphruk, Montree
    SCIENTIFIC REPORTS, 2016, 6
  • [27] Facile preparation of N-doped porous carbon nanosheets derived from potassium citrate/melamine for high-performance supercapacitors
    Kim, Deokhwan
    Jin, Xuanzhen
    Cho, Youngseul
    Lim, Jiho
    Yan, Bingyi
    Ko, Dongjin
    Kim, Dae Kyom
    Piao, Yuanzhe
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 892
  • [28] Nitrogen and phosphorous co-doped carbon nanotubes for high-performance supercapacitors
    Devarajan, Johnsirani
    Arumugam, Pandurangan
    CARBON LETTERS, 2023, 33 (06) : 1615 - 1627
  • [29] Titanium and nitrogen co-doped porous carbon for high-performance supercapacitors†
    Chen, Yurou
    Feng, Xin
    Wang, Qi
    Gu, WenXian
    Wu, Wanyi
    Peng, Xuqiang
    Jin, Huile
    Wang, Jichang
    Wang, Shun
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (09) : 3628 - 3635
  • [30] Crystal morphology evolution of Ni-Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors
    Jing, Chuan
    Liu, Xiaoli
    Liu, Xiaoying
    Jiang, Debin
    Dong, Biqin
    Dong, Fan
    Wang, Jinshu
    Li, Nan
    Lan, Tian
    Zhang, Yuxin
    CRYSTENGCOMM, 2018, 20 (46): : 7428 - 7434