Fine-Grained Open-Set Deepfake Detection via Unsupervised Domain Adaptation

被引:1
|
作者
Zhou, Xinye [1 ,2 ]
Han, Hu [1 ,2 ]
Shan, Shiguang [2 ,3 ]
Chen, Xilin [2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Key Lab AI Safety CAS, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Deepfakes; Adaptation models; Feature extraction; Data models; Face recognition; Training; Faces; Deepfake detection; domain adaptation; unsupervised learning; fine-grained classification;
D O I
10.1109/TIFS.2024.3435440
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deepfake represented by face swapping and face reenactment can transfer the appearance and behavioral expressions of a face in one video image to another face in a different video. In recent years, with the advancement of deep learning techniques, deepfake technology has developed rapidly, achieving increasingly realistic effects. Therefore, many researchers have begun to study deepfake detection research. However, most existing studies on deepfake detection are mainly limited to binary classification of real and fake images, rather than identifying different methods in an open-world scenario, leading to failures in dealing with unknown deepfake categories in practice. In this paper, we propose an unsupervised domain adaptation method for fine-grained open-set deepfake detection. Our method first uses labeled data from the source domain for model pre-training to establish the ability of recognizing different deepfake methods in the source domain. Then, the method uses a Network Memorization based Adaptive Clustering (NMAC) approach to cluster unlabeled images in the target domain and designs a Pseudo-Label Generation (PLG) to generate virtual class labels for unknown deepfake categories by matching the adaptive clustering results with the known deepfake categories in the source domain. Finally, we retrain the initial multi-class deepfake detection model using labeled data of the source domain and pseudo-labeled data of the target domain to improve its generalization ability to unknown deepfake classes presented in the target domain. We validate the effectiveness of the proposed method under multiple open-set fine-grained deepfake detection tasks based on three deepfake datasets (ForgerNet, FaceForensics++, and FakeAVCeleb). Experimental results show that our method has better domain generalization ability than the state-of-the-art methods, and achieves promising performance in fine-grained open-set deepfake detection.
引用
收藏
页码:7536 / 7547
页数:12
相关论文
共 50 条
  • [41] Multi-source Open-Set Image Classification Based on Deep Adversarial Domain Adaptation
    Zhang, Haitao
    Liu, Xinran
    Han, Qilong
    Lu, Dan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT V, 2023, 14258 : 143 - 156
  • [42] Multiweight Adversarial Open-Set Domain Adaptation Network for Machinery Fault Diagnosis With Unknown Faults
    Wang, Rui
    Huang, Weiguo
    Shi, Mingkuan
    Ding, Chuancang
    Wang, Jun
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 31483 - 31492
  • [43] Fine-Grained Object Detection of Satellite Video in the Frequency Domain
    Sun, Yuhan
    Li, Shengyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [44] A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis
    Chai, Zheng
    Zhao, Chunhui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (03) : 1432 - 1442
  • [45] Open-Set Fabric Defect Detection With Defect Generation and Transfer
    Gao, Can
    Chen, Xiujian
    Zhou, Jie
    Wang, Jinbao
    Shen, Linlin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [46] Unsupervised Domain Adaptation via Domain-Adaptive Diffusion
    Peng, Duo
    Ke, Qiuhong
    Ambikapathi, ArulMurugan
    Yazici, Yasin
    Lei, Yinjie
    Liu, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4245 - 4260
  • [47] FiDo: Ubiquitous Fine-Grained WiFi-based Localization for Unlabelled Users via Domain Adaptation
    Chen, Xi
    Li, Hang
    Zhou, Chenyi
    Liu, Xue
    Wu, Di
    Dudek, Gregory
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 23 - 33
  • [48] Source-Free Progressive Graph Learning for Open-Set Domain Adaptation
    Luo, Yadan
    Wang, Zijian
    Chen, Zhuoxiao
    Huang, Zi
    Baktashmotlagh, Mahsa
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11240 - 11255
  • [49] Open-set federated adversarial domain adaptation based cross-domain fault diagnosis
    Xu, Shu
    Ma, Jian
    Song, Dengwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [50] Explicit Facial Expression Transfer via Fine-Grained Representations
    Shao, Zhiwen
    Zhu, Hengliang
    Tang, Junshu
    Lu, Xuequan
    Ma, Lizhuang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4610 - 4621