Isotope-Based Characterization of Soil Elemental Mercury Emissions from Historical Mercury Mining Areas: Driving Pathways and Relative Contributions

被引:1
作者
Cao, Qingyi [1 ,2 ]
Hu, Haiyan [1 ]
Yuan, Wei [1 ]
Huang, Jen-How [1 ,3 ]
Fu, Xuewu [1 ]
Feng, Xinbin [1 ,4 ]
机构
[1] Chinese Acad Sci, State Key Lab Environm Geochem, Inst Geochem, Guiyang 550081, Peoples R China
[2] Guizhou Univ, Key Lab Karst Georesources & Environm, Minist Educ, Guiyang 550025, Peoples R China
[3] Univ Basel, Environm Geosci, CH-4056 Basel, Switzerland
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
soil-atmosphere mercury flux; photoreduction; microbial reduction; HgS dissolution; bioleaching; MASS-INDEPENDENT FRACTIONATION; ATMOSPHERIC MERCURY; ORGANIC-MATTER; FOREST FLOOR; PADDY SOILS; REDUCTION; SPECIATION; HG; REMEDIATION; POLLUTION;
D O I
10.1021/acs.est.4c05220
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photo-, microbial, and abiotic dark reduction of soil mercury (Hg) may all lead to elemental mercury (Hg(0)) emissions. Utilizing lab incubations, isotope signatures of Hg(0) emitted from mining soils were characterized to quantify the interplay and contributions of various Hg reduction pathways, which have been scarcely studied. At 15 degrees C, microbial reduced Hg(0) showed a negative mass-dependent fractionation (MDF) (delta Hg-202 = -0.30 +/- 0.08 parts per thousand, 1SD) and near-zero mass-independent fractionation (MIF) (Delta Hg-199 = 0.01 +/- 0.04 parts per thousand, 1SD), closely resembling dark reduced Hg(0) (delta Hg-202 = -0.18 +/- 0.05 parts per thousand, Delta Hg-199 = -0.01 +/- 0.03 parts per thousand, 1SD). In comparison, photoreduced Hg(0) exhibited significant MDF and MIF (delta Hg-202 = -0.55 +/- 0.05 parts per thousand, Delta Hg-199 = -0.20 +/- 0.07 parts per thousand, 1SD). In the dark, Hg isotopic signatures remained constant over the temperature range of 15-35 degrees C. Nonetheless, light exposure and temperature changes together altered Hg(0) MIF signatures significantly. Isotope mixing models along with Hg(0) emission flux data highlighted photo- and microbial reduction contributing 79-88 and 12-21%, respectively, of the total Hg(0) emissions from mining soils, with negligible abiotic dark reduction. Microorganisms are the key driver of soil Hg(0) emissions by first dissolving HgS and then promoting ionic Hg formation, followed by facilitating the photo- and microbial reduction of organically bound Hg. These insights deepen our understanding of the biogeochemical processes that influence Hg(0) releases from surface soils.
引用
收藏
页码:16824 / 16832
页数:9
相关论文
共 63 条
[21]   Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals [J].
Giovanella, Patricia ;
Cabral, Lucelia ;
Costa, Alexandre Pereira ;
de Oliveira Camargo, Flavio Anastacio ;
Gianello, Clesio ;
Bento, Fatima Menezes .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2017, 140 :162-169
[22]   Application of controlled mesocosms for understanding mercury air-soil-plant exchange [J].
Gustin, MS ;
Ericksen, JA ;
Schorran, DE ;
Johnson, DW ;
Lindberg, SE ;
Coleman, JS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (22) :6044-6050
[23]   Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress [J].
Hagele, Thomas J. ;
Mazerik, Jessica N. ;
Gregory, Anita ;
Kaufman, Bruce ;
Magalang, Ulysses ;
Kuppusamy, M. Lakshmi ;
Marsh, Clay B. ;
Kuppusamy, Periannan ;
Parinandi, Narasimham L. .
INTERNATIONAL JOURNAL OF TOXICOLOGY, 2007, 26 (01) :57-69
[24]   Export of atmospheric mercury from Asia [J].
Jaffe, D ;
Prestbo, E ;
Swartzendruber, P ;
Weiss-Penzias, P ;
Kato, S ;
Takami, A ;
Hatakeyama, S ;
Kajii, Y .
ATMOSPHERIC ENVIRONMENT, 2005, 39 (17) :3029-3038
[25]   Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement [J].
Jiang, Tao ;
Skyllberg, Ulf ;
Wei, Shiqiang ;
Wang, Dingyong ;
Lu, Song ;
Jiang, Zhenmao ;
Flanagan, Dennis C. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 154 :151-167
[26]   Abiotic and Biotic Reduction of Iodate Driven by Shewanella oneidensis MR-1 [J].
Jiang, Zhou ;
Cui, Mengjie ;
Qian, Li ;
Jiang, Yongguang ;
Shi, Liang ;
Dong, Yiran ;
Li, Junxia ;
Wang, Yanxin .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (48) :19817-19826
[27]   Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model [J].
Kocman, David ;
Horvat, Milena .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2011, 92 (08) :2038-2046
[28]  
Konhauser K., 2007, Introduction to Geomicrobiology
[29]   Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies [J].
Li, Hong ;
Li, Yunyun ;
Tang, Wenli ;
Liu, Yunpeng ;
Zheng, Lirong ;
Xu, Nan ;
Li, Yu-Feng ;
Xu, Diandou ;
Gao, Yuxi ;
Zhao, Jiating .
JOURNAL OF HAZARDOUS MATERIALS, 2022, 424
[30]   The importance of anabolism in microbial control over soil carbon storage [J].
Liang, Chao ;
Schimel, Joshua P. ;
Jastrow, Julie D. .
NATURE MICROBIOLOGY, 2017, 2 (08)