Deep Reinforcement Learning for Computation Rate Maximization in RIS-Enabled Mobile Edge Computing

被引:0
作者
Xu, Jianpeng [1 ]
Ai, Bo [2 ,3 ,4 ]
Wu, Lina [5 ]
Zhang, Yaoyuan [1 ]
Wang, Weirong [1 ]
Li, Huiya [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
[2] Beijing Jiaotong Univ, State Key Lab Adv Rail Autonomous Operat, Beijing 100044, Peoples R China
[3] Peng Cheng Lab, Res Ctr Networks & Commun, Shenzhen 518055, Peoples R China
[4] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China
[5] Beijing Informat Sci & Technol Univ, Inst Appl Math, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Servers; Optimization; Energy consumption; Uplink; Partitioning algorithms; Deep reinforcement learning; Reconfigurable intelligent surface (RIS); mobile edge computing (MEC); deep reinforcement learning (DRL); computation rate maximization;
D O I
10.1109/TVT.2024.3387759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable intelligent surface (RIS) is a promising technology to enhance the performance of mobile edge computing (MEC) network. Nevertheless, the RIS-enabled MEC network design is a non-trivial problem. This paper investigates the RIS-enabled MEC network, where the Internet of Things devices (IoTDs) with limited energy budgets can offload their partial computation tasks to the base station (BS). We first formulate a sum computation rate maximization problem by jointly designing the RIS phase shifts, and the IoTDs' energy partition strategies for local computing and offloading. Then, to handle the non-convex optimization problem, we propose a deep reinforcement learning (DRL)-based algorithm, in which the twin delayed deep deterministic policy gradient (TD3) algorithm is adopted to optimize the RIS phase shifts and the IoTDs' energy partition strategies. Simulation results show that the proposed TD3 solution can reach a better sum computation rate than the benchmark algorithms.
引用
收藏
页码:10862 / 10866
页数:5
相关论文
共 50 条
[21]   Computation Efficiency Maximization in Multi-UAV-Enabled Mobile Edge Computing Systems Based on 3D Deployment Optimization [J].
Deng, Xiaoheng ;
Zhao, Jiahao ;
Kuang, Zhufang ;
Chen, Xuechen ;
Guo, Qi ;
Tang, Fengxiao .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2023, 11 (03) :778-790
[22]   Deep Reinforcement Learning for Task Offloading in Edge Computing Assisted Power IoT [J].
Hu, Jiangyi ;
Li, Yang ;
Zhao, Gaofeng ;
Xu, Bo ;
Ni, Yiyang ;
Zhao, Haitao .
IEEE ACCESS, 2021, 9 :93892-93901
[23]   Deep Reinforcement Learning and Optimization Based Green Mobile Edge Computing [J].
Yang, Yang ;
Hu, Yulin ;
Gursoy, M. Cenk .
2021 IEEE 18TH ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC), 2021,
[24]   Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems [J].
Tang, Ming ;
Wong, Vincent W. S. .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) :1985-1997
[25]   Deep Graph Reinforcement Learning for Mobile Edge Computing: Challenges and Solutions [J].
Wang, Yixiao ;
Wu, Huaming ;
Li, Ruidong .
IEEE NETWORK, 2024, 38 (05) :314-323
[26]   Offloading and Resource Allocation With General Task Graph in Mobile Edge Computing: A Deep Reinforcement Learning Approach [J].
Yan, Jia ;
Bi, Suzhi ;
Zhang, Ying-Jun Angela .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (08) :5404-5419
[27]   Online Deep Reinforcement Learning for Computation Offloading in Blockchain-Empowered Mobile Edge Computing [J].
Qiu, Xiaoyu ;
Liu, Luobin ;
Chen, Wuhui ;
Hong, Zicong ;
Zheng, Zibin .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) :8050-8062
[28]   Learning IoV in Edge: Deep Reinforcement Learning for Edge Computing Enabled Vehicular Networks [J].
Xu, Shilin ;
Guo, Caili ;
Hu, Rose Qingyang ;
Qian, Yi .
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
[29]   Information Timeliness Driven Statistical QoS Guarantee in RIS-Enabled Wireless Networks via Deep Reinforcement Learning [J].
Liu, Long ;
Qin, Xiaoqi ;
Chen, Hao ;
Xu, Xiaodong ;
Ma, Nan ;
Zhang, Ping .
IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (14) :25185-25197
[30]   AoI-Aware Partial Computation Offloading in IIoT With Edge Computing: A Deep Reinforcement Learning Based Approach [J].
Peng, Kai ;
Xiao, Peiyun ;
Wang, Shangguang ;
Leung, Victor C. M. .
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (04) :3766-3777