Deep Reinforcement Learning for Computation Rate Maximization in RIS-Enabled Mobile Edge Computing

被引:0
|
作者
Xu, Jianpeng [1 ]
Ai, Bo [2 ,3 ,4 ]
Wu, Lina [5 ]
Zhang, Yaoyuan [1 ]
Wang, Weirong [1 ]
Li, Huiya [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
[2] Beijing Jiaotong Univ, State Key Lab Adv Rail Autonomous Operat, Beijing 100044, Peoples R China
[3] Peng Cheng Lab, Res Ctr Networks & Commun, Shenzhen 518055, Peoples R China
[4] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China
[5] Beijing Informat Sci & Technol Univ, Inst Appl Math, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Servers; Optimization; Energy consumption; Uplink; Partitioning algorithms; Deep reinforcement learning; Reconfigurable intelligent surface (RIS); mobile edge computing (MEC); deep reinforcement learning (DRL); computation rate maximization;
D O I
10.1109/TVT.2024.3387759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable intelligent surface (RIS) is a promising technology to enhance the performance of mobile edge computing (MEC) network. Nevertheless, the RIS-enabled MEC network design is a non-trivial problem. This paper investigates the RIS-enabled MEC network, where the Internet of Things devices (IoTDs) with limited energy budgets can offload their partial computation tasks to the base station (BS). We first formulate a sum computation rate maximization problem by jointly designing the RIS phase shifts, and the IoTDs' energy partition strategies for local computing and offloading. Then, to handle the non-convex optimization problem, we propose a deep reinforcement learning (DRL)-based algorithm, in which the twin delayed deep deterministic policy gradient (TD3) algorithm is adopted to optimize the RIS phase shifts and the IoTDs' energy partition strategies. Simulation results show that the proposed TD3 solution can reach a better sum computation rate than the benchmark algorithms.
引用
收藏
页码:10862 / 10866
页数:5
相关论文
共 50 条
  • [1] Computation Bits Maximization in UAV-Enabled Mobile-Edge Computing System
    Lyu, Liang
    Zeng, Fanzi
    Xiao, Zhu
    Zhang, Chengyuan
    Jiang, Hongbo
    Havyarimana, Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 10640 - 10651
  • [2] Deep Reinforcement Learning-Based Computation Offloading for Mobile Edge Computing in 6G
    Sun, Haifeng
    Wang, Jiawei
    Yong, Dongping
    Qin, Mingwei
    Zhang, Ning
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7482 - 7493
  • [3] Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things
    Xu, Jianpeng
    Xu, Aoshuo
    Chen, Liangyu
    Chen, Yali
    Liang, Xiaolin
    Ai, Bo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2455 - 2464
  • [4] A Deep-Reinforcement-Learning-Based Computation Offloading With Mobile Vehicles in Vehicular Edge Computing
    Lin, Jie
    Huang, Siqi
    Zhang, Hanlin
    Yang, Xinyu
    Zhao, Peng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15501 - 15514
  • [5] Energy Efficient Joint Computation Offloading and Service Caching for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Zhou, Huan
    Zhang, Zhenyu
    Wu, Yuan
    Dong, Mianxiong
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (02): : 950 - 961
  • [6] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [7] Deep Reinforcement Learning and Game Theory for Computation Offloading in Dynamic Edge Computing Markets
    Li, Shuyang
    Hu, Xiaohui
    Du, Yongwen
    IEEE ACCESS, 2021, 9 : 121456 - 121466
  • [8] Cooperative Computation Offloading and Resource Allocation for Blockchain-Enabled Mobile-Edge Computing: A Deep Reinforcement Learning Approach
    Feng, Jie
    Yu, F. Richard
    Pei, Qingqi
    Chu, Xiaoli
    Du, Jianbo
    Zhu, Li
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) : 6214 - 6228
  • [9] A Deep Reinforcement Learning Approach Towards Computation Offloading for Mobile Edge Computing
    Wang, Qing
    Tan, Wenan
    Qin, Xiaofan
    HUMAN CENTERED COMPUTING, 2019, 11956 : 419 - 430
  • [10] A Deep Reinforcement Learning Approach for Online Computation Offloading in Mobile Edge Computing
    Zhang, Yameng
    Liu, Tong
    Zhu, Yanmin
    Yang, Yuanyuan
    2020 IEEE/ACM 28TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2020,