A Multifaceted Reasoning Network for Explainable Fake News Detection

被引:2
|
作者
Han, Linfeng [1 ]
Zhang, Xiaoming [2 ]
Zhou, Ziyi [1 ]
Liu, Yun [3 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, 37,Coll Rd, Beijing 100083, Peoples R China
[2] Beihang Univ, State Key Lab Software Dev Environm, 37,Coll Rd, Beijing 100083, Peoples R China
[3] Moutai Inst, Dept Automat, Lupin Ave, Renhuai 564507, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Multimodal; Knowledge reasoning; Explainable; Fake news detection; Heterogeneous network;
D O I
10.1016/j.ipm.2024.103822
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fake news detection involves developing techniques to identify and flag misleading or false information disseminated through media sources. Current efforts often use limited information for categorization, lacking comprehensive data integration and explanation of results. Additionally, the substantial noise generated by multi-source data presents extra challenges to fake news detection. To address these problems, we propose a novel Multifaceted Reasoning Network for Explainable Fake News Detection (MRE-FND). This model constructs two heterogeneous graphs to learn about social network information and news content knowledge, including news content, social networks, knowledge graphs, and external news data. Utilizing graph information bottleneck theory, it eliminates noise from multifaceted data and extracts key information for fake news detection. An interpretable reasoning module is designed to provide clear explanations for the classification results. Our proposition undergoes extensive evaluation on three popular datasets, Politifact, Gossipcop and Pheme, which consist of 495, 15707 and 2189 news, respectively. Our model achieved state-of-the-art results across all metrics on three datasets. Specifically, our model achieved accuracy rates of 92.9%, 83.4% and 84.7% on the Politifact, Gossipcop and Pheme datasets, respectively, demonstrating improvements of 2.0, 0.8 and 1.1 percentage points over the baseline, thus establishing the superiority of our model. Further analysis indicates that our model can effectively handle redundant information in multi-faceted data, enhancing the performance of fake news detection while also providing multifaceted explanations for the classification results.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection
    Wu, Lianwei
    Long, Yuzhou
    Gao, Chao
    Wang, Zhen
    Zhang, Yanning
    INFORMATION FUSION, 2023, 100
  • [2] dEFEND: Explainable Fake News Detection
    Shu, Kai
    Cui, Limeng
    Wang, Suhang
    Lee, Dongwon
    Liu, Huan
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 395 - 405
  • [3] A Survey on Explainable Fake News Detection
    Mishima, Ken
    Yamana, Hayato
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (07) : 1249 - 1257
  • [4] SERN: STANCE EXTRACTION AND REASONING NETWORK FOR FAKE NEWS DETECTION
    Xie, Jianhui
    Liu, Song
    Liu, Ruixin
    Zhang, Yinghong
    Zhu, Yuesheng
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2520 - 2524
  • [5] dEFEND: A System for Explainable Fake News Detection
    Cui, Limeng
    Shu, Kai
    Wang, Suhang
    Lee, Dongwon
    Liu, Huan
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2961 - 2964
  • [6] Explainable Machine Learning for Fake News Detection
    Reis, Julio C. S.
    Correia, Andre
    Murai, Fabricio
    Veloso, Adriano
    Benevenuto, Fabricio
    PROCEEDINGS OF THE 11TH ACM CONFERENCE ON WEB SCIENCE (WEBSCI'19), 2019, : 17 - 26
  • [7] Trust-Aware Evidence Reasoning and Spatiotemporal Feature Aggregation for Explainable Fake News Detection
    Chen, Jing
    Zhou, Gang
    Lu, Jicang
    Wang, Shiyu
    Li, Shunhang
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [8] Explainable Detection of Fake News and Cyberbullying on Social Media
    Li, Cheng-Te
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 398 - 398
  • [9] Exploiting Content Characteristics for Explainable Detection of Fake News
    Munoz, Sergio
    Iglesias, Carlos A.
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (10)
  • [10] Incorporating Relational Knowledge in Explainable Fake News Detection
    Wu, Kun
    Yuan, Xu
    Ning, Yue
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 403 - 415