Materials advancements in solid-state inorganic electrolytes for highly anticipated all solid Li-ion batteries

被引:16
|
作者
Sarfraz, Nafeesa [1 ]
Kanwal, Nosheen [2 ]
Ali, Muzahir [3 ]
Ali, Kashif [4 ]
Hasnain, Ali [5 ]
Ashraf, Muhammad [6 ]
Ayaz, Muhammad [7 ]
Ifthikar, Jerosha [8 ]
Ali, Shahid [9 ]
Hendi, Abdulmajeed [10 ]
Baig, Nadeem [10 ,11 ]
Ehsan, Muhammad Fahad [12 ]
Shah, Syed Shaheen [13 ]
Khan, Rizwan [14 ]
Khan, Ibrahim [1 ,7 ,8 ]
机构
[1] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Govt Coll Univ Faisalabad, Dept Phys, Faisalabad 38000, Pakistan
[3] Univ Engn & Technol, Mech Engn Dept, Taxila, Pakistan
[4] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea
[5] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[6] Univ Coll Dublin UCD, Coll Sci, Sch Phys, Dublin, Ireland
[7] Univ Swat, Inst Chem Sci, Swat 19130, Khyber Pakhtunk, Pakistan
[8] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Green Chem & Energy, Ningbo 315100, Peoples R China
[9] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Dhahran 31261, Saudi Arabia
[10] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Phys Dept, Dhahran 31261, Saudi Arabia
[11] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
[12] Northeastern Univ, Dept Civil & Environm Engn, Boston, MA 02115 USA
[13] Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Nishikyo Ku, Kyoto 6158520, Japan
[14] Kwangwoon Univ, Dept Elect Engn, Seoul 01897, South Korea
关键词
Solid inorganic electrolytes; All solid state Li batteries; Charge transfer mechanism; Energy storage devices; Li-ions transport mechanism; Safety and sustainibility; ATOMIC LAYER DEPOSITION; LITHIUM-ION; POLYMER ELECTROLYTES; COMPOSITE ELECTROLYTES; CERAMIC ELECTROLYTES; TRANSPORT-PROPERTIES; CATHODE MATERIALS; CONDUCTIVITY; GLASS; LIQUID;
D O I
10.1016/j.ensm.2024.103619
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The superior characteristics exhibited by all-solid-state Li-ion batteries (ASSLIBs) have solidified their status as an excellent alternative in the realm of battery development. With noteworthy improvements in safety, good energy density, and prolonged lifespan, ASSLIBs have emerged as a compelling substitute for conventional liquid electrolyte batteries. Solid inorganic electrolytes (SIEs) having high ionic conductivity, a broad electrochemical stability window, and compatibility with Lithium (Li) metal anodes, have become appealing ingredients for ASSLIBs. SIEs present a distinctive prospect for attaining good energy density and faster charging capabilities while concurrently mitigating the safety risks linked to combustible liquid electrolytes. This article has summarized the recent advances in SIEs for ASSLIBs and their useful invasions in this field. The review started with a discussion of the fundamental properties and mechanisms of SIEs. Then, the current progress in developing various kinds of SIEs is comprehensively discussed with relevant case studies. The expected Li-ions transport mechanisms are briefly analyzed in each type with specific examples. The inclusive overview provided in this article is highly anticipated to draw interest from a wide range of disciplines, specifically electrolyte material designing for energy storage devices.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] A Comparative Review of Models for All-Solid-State Li-Ion Batteries
    Yildiz, Erkin
    Serpelloni, Mattia
    Salvadori, Alberto
    Cabras, Luigi
    BATTERIES-BASEL, 2024, 10 (05):
  • [42] Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes
    Banerjee, Abhik
    Wang, Xuefeng
    Fang, Chengcheng
    Wu, Erik A.
    Meng, Ying Shirley
    CHEMICAL REVIEWS, 2020, 120 (14) : 6878 - 6933
  • [43] Achieving high performance for aluminum stabilized Li7La3Zr2O12 solid electrolytes for all solid-state Li-ion batteries: A thermodynamic point of view
    Dermenci, Kamil Burak
    Turan, Servet
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (01) : 141 - 149
  • [44] Recent Progress in All-Solid-State Lithium-Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes
    Umeshbabu, Ediga
    Zheng, Bizhu
    Yang, Yong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (02) : 199 - 230
  • [45] Matching silicon-based anodes with sulfide-based solid-state electrolytes for Li-ion batteries
    Grandjean, Martine
    Pichardo, Melanie
    Biecher, Yohan
    Haon, Cedric
    Chenevier, Pascale
    JOURNAL OF POWER SOURCES, 2023, 580
  • [46] Three-Component Solid Polymer Electrolytes Based on Li-Ion Exchanged Microporous Silicates and an Ionic Liquid for Solid-State Batteries
    Barbosa, Joao C.
    Correia, Daniela M.
    Salado, Manuel
    Goncalves, Renato
    Ferdov, Stanislav
    Bermudez, Veronica de Zea
    Costa, Carlos M.
    Lanceros-Mendez, Senentxu
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (02)
  • [47] Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries
    Guo, Xingyu
    Wang, Zhenbin
    Yang, Ji-Hui
    Gong, Xin-Gao
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (17) : 10124 - 10136
  • [48] Searching for Mechanically Superior Solid-State Electrolytes in Li-Ion Batteries via Data-Driven Approaches
    Choi, Eunseong
    Jo, Junho
    Kim, Wonjin
    Min, Kyoungmin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) : 42590 - 42597
  • [49] All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs
    Wu, Baolin
    Chen, Chunguang
    Danilov, Dmitri L.
    Eichel, Ruediger-A.
    Notten, Peter H. L.
    BATTERIES-BASEL, 2023, 9 (03):
  • [50] Review of Garnet-Based Solid Electrolytes for Li-Ion Batteries (LIBs)
    Kodgire, Pravin
    Tripathi, Brijesh
    Chandra, Prakash
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (05) : 2203 - 2228