Achieving Efficient Oxygen Evolution on High-Entropy Sulfide Utilizing Low Electronegativity of Al

被引:1
|
作者
Wan, Yi [1 ]
Wei, Wenrui [1 ]
Ding, Shengqi [1 ]
Wu, Liang [1 ]
Yuan, Xianxia [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
electronegativity; high-entropy sulfide; oxygen evolution reaction; redistribution of local electrons; NANOSHEETS; ALLOYS; PHASE; ORR;
D O I
10.1002/smll.202404689
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient and stable catalysts are in high demand for accelerating the oxygen evolution reaction (OER). Herein, a high-entropy sulfide (HES) of (FeCoNiCrCuAl)S@HCS with a 3D structure is successfully prepared by utilizing a simple one-step solvothermal method and employed as catalyst toward OER. The lower electronegativity of Al compared to the other metal elements and its anti-corrosion character enable an outstanding OER performance of (FeCoNiCrCuAl)S@HCS with an overpotential of 253 mV at 10 mA cm-2 and an excellent durability after 20 000 CV cycles, outperforming the commercial RuO2 and most reported metal-sulfide catalysts. Experiments coupled with theoretical calculations reveal that Al atom primarily serves as electron donor and promotes a redistribution of local electrons from Co and Cr toward adjacent Fe, Ni, and Cu sites. As a result, the Cr-Al site possesses a lowest energy barrier during the rate-determining step and works as the dominant active site for OER process. This study provides a novel insight and strategy into structural design and performance enhancement for HES materials. High-entropy sulfide of (FeCoNiCrCuAl)S@HCS with a 3D structure is synthesized, in which the lower electronegativity of Al makes it serve as electron donor and promotes the redistribution of local electrons from Co and Cr site toward adjacent Fe, Ni and Cu sites, eventually promoting oxygen evolution reaction kinetics. image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] High-Entropy Selenides with Tunable Lattice Distortion as Efficient Electrocatalysts for Oxygen Evolution Reaction
    Li, Laiquan
    Li, Changfa
    Du, Jiale
    Huang, Qianwei
    Duan, Jingjing
    Liu, Jiawei
    Chen, Sheng
    CHEMSUSCHEM, 2025, 18 (05)
  • [22] CoFeNiMnZnB as a High-Entropy Metal Boride to Boost the Oxygen Evolution Reaction
    Wang, Xiang
    Zuo, Yong
    Horta, Sharona
    He, Ren
    Yang, Linlin
    Moghaddam, Ahmad Ostovari
    Ibanez, Maria
    Qi, Xueqiang
    Cabot, Andreu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (42) : 48212 - 48219
  • [23] High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution
    Zhu, Han
    Zhu, Zhenfeng
    Hao, Jiace
    Sun, Shuhui
    Lu, Shuanglong
    Wang, Chan
    Ma, Piming
    Dong, Weifu
    Du, Mingliang
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [24] A high-entropy phosphate catalyst for oxygen evolution reaction
    Qiao, Haiyu
    Wang, Xizheng
    Dong, Qi
    Zheng, Hongkui
    Chen, Gang
    Hong, Min
    Yang, Chun-Peng
    Wu, Meiling
    He, Kai
    Hu, Liangbing
    NANO ENERGY, 2021, 86
  • [25] High electronegativity of Ag and P in high-entropy materials synergistically promotes efficient water electrolysis
    Zhang, Bo
    Liu, Mengzhao
    Yin, Jie
    Lu, Wenxue
    Geng, Ping
    Yi, Weiming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 105 : 521 - 530
  • [26] Sulphur-mediated high-entropy oxide towards high-efficient oxygen evolution reaction
    He, Huan
    Sun, Jinhui
    Li, Zenghui
    Yu, Yihang
    Wen, Xiaojing
    Wang, Zhiyuan
    Liu, Yanguo
    Qi, Xiwei
    Wang, Dan
    APPLIED MATERIALS TODAY, 2025, 43
  • [27] Self-Reconstruction of Sulfate-Containing High Entropy Sulfide for Exceptionally High-Performance Oxygen Evolution Reaction Electrocatalyst
    Nguyen, Thi Xuyen
    Su, Yen-Hsun
    Lin, Chia-Chun
    Ting, Jyh-Ming
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (48)
  • [28] Novel High-Entropy FeCoNiMoZn-Layered Hydroxide as an Efficient Electrocatalyst for the Oxygen Evolution Reaction
    Cheng, Zhihao
    Han, Xin
    Han, Liying
    Zhang, Jinfeng
    Liu, Jie
    Wu, Zhong
    Zhong, Cheng
    NANOMATERIALS, 2024, 14 (10)
  • [29] Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction
    Jiang, Zhiqiang
    Yuan, Yuan
    Tan, Li
    Li, Minjie
    Peng, Kun
    APPLIED SURFACE SCIENCE, 2023, 627
  • [30] Design of high-entropy antiperovskite metal nitrides as highly efficient electrocatalysts for oxygen evolution reaction
    Zhu, Lili
    Li, Changdian
    Zheng, Ruobing
    Cheng, Wangping
    He, Yuandi
    Gong, Chengzhuan
    Liu, Miao
    Huang, Yanan
    Zhu, Xuebin
    Sun, Yuping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 638 - 647