Sharp metastability transition for two-dimensional bootstrap percolation with symmetric isotropic threshold rules

被引:0
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Hartarsky, Ivailo [3 ]
机构
[1] Univ Geneva, Sect Math, 2-4 Rue Lievre, CH-1211 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] TU Wien, Fac Math & Geoinformat, Inst Stat & Math Methods Econ, Res Unit Probabil, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
欧洲研究理事会; 欧盟地平线“2020”; 奥地利科学基金会;
关键词
Bootstrap percolation; Sharp threshold; Metastability;
D O I
10.1007/s00440-024-01310-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study two-dimensional critical bootstrap percolation models. We establish that a class of these models including all isotropic threshold rules with a convex symmetric neighbourhood, undergoes a sharp metastability transition. This extends previous instances proved for several specific rules. The paper supersedes a draft by Alexander Holroyd and the first author from 2012. While it served a role in the subsequent development of bootstrap percolation universality, we have chosen to adopt a more contemporary viewpoint in its present form.
引用
收藏
页码:445 / 483
页数:39
相关论文
共 28 条
  • [21] Metastability of the Two-Dimensional Blume–Capel Model with Zero Chemical Potential and Small Magnetic Field
    C. Landim
    P. Lemire
    Journal of Statistical Physics, 2016, 164 : 346 - 376
  • [22] Metastability of the Two-Dimensional Blume-Capel Model with Zero Chemical Potential and Small Magnetic Field
    Landim, C.
    Lemire, P.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (02) : 346 - 376
  • [23] Dynamic fluctuations and two-dimensional melting at the spin reorientation transition
    Bergeard, N.
    Jamet, J. P.
    Mougin, A.
    Ferre, J.
    Gierak, J.
    Bourhis, E.
    Stamps, R.
    PHYSICAL REVIEW B, 2012, 86 (09)
  • [24] Mobile impurity probing a two-dimensional superfluid phase transition
    Alhyder, R.
    Bruun, G. M.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [25] Berezinskii-Kosterlitz-Thouless Transition of the Two-Dimensional XY Model on the Honeycomb Lattice
    Jiang, Fu-Jiun
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (10):
  • [26] Fulde-Ferrell states and Berezinskii-Kosterlitz-Thouless phase transition in two-dimensional imbalanced Fermi gases
    Yin, Shaoyu
    Martikainen, J. -P.
    Torma, P.
    PHYSICAL REVIEW B, 2014, 89 (01)
  • [27] Effect of distribution shape on the melting transition, local ordering, and dynamics in a model size-polydisperse two-dimensional fluid
    Pame, Jackson
    Shagolsem, Lenin S.
    CHINESE PHYSICS B, 2024, 33 (07)
  • [28] Effects of Spin-Orbit Coupling on the Berezinskii-Kosterlitz-Thouless Transition and the Vortex-Antivortex Structure in Two-Dimensional Fermi Gases
    Devreese, Jeroen P. A.
    Tempere, Jacques
    de Melo, Carlos A. R. Sa
    PHYSICAL REVIEW LETTERS, 2014, 113 (16)