Artificial intelligence for treatment delivery: image-guided radiotherapy

被引:5
作者
Rabe, Moritz [1 ]
Kurz, Christopher [1 ]
Thummerer, Adrian [1 ]
Landry, Guillaume [1 ,2 ,3 ]
机构
[1] Ludwig Maximilians Univ Munchen, LMU Univ Hosp, Dept Radiat Oncol, Marchioninistr 15, D-81377 Munich, Bavaria, Germany
[2] German Canc Consortium DKTK, Partner Site Munich, Marchioninistr 15, D-81377 Munich, Bavaria, Germany
[3] Bavarian Canc Res Ctr BZKF, Marchioninistr 15, D-81377 Munich, Bavaria, Germany
关键词
Synthetic computed tomography; Deep learning; Automatic segmentation; Motion management; Online adaptive radiation therapy; CONE-BEAM CT; PATHOLOGICAL COMPLETE RESPONSE; DEEP LEARNING APPROACH; GENERATE SYNTHETIC CT; NEURAL-NETWORK; RADIATION-THERAPY; ADAPTIVE RADIOTHERAPY; COMPUTED-TOMOGRAPHY; AUTO-SEGMENTATION; DELTA-RADIOMICS;
D O I
10.1007/s00066-024-02277-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Radiation therapy (RT) is a highly digitized field relying heavily on computational methods and, as such, has a high affinity for the automation potential afforded by modern artificial intelligence (AI). This is particularly relevant where imaging is concerned and is especially so during image-guided RT (IGRT). With the advent of online adaptive RT (ART) workflows at magnetic resonance (MR) linear accelerators (linacs) and at cone-beam computed tomography (CBCT) linacs, the need for automation is further increased. AI as applied to modern IGRT is thus one area of RT where we can expect important developments in the near future. In this review article, after outlining modern IGRT and online ART workflows, we cover the role of AI in CBCT and MRI correction for dose calculation, auto-segmentation on IGRT imaging, motion management, and response assessment based on in-room imaging.
引用
收藏
页码:283 / 297
页数:15
相关论文
共 184 条
[1]   Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography [J].
Abbani, Nelly ;
Baudier, Thomas ;
Rit, Simon ;
di Franco, Francesca ;
Okoli, Franklin ;
Jaouen, Vincent ;
Tilquin, Florian ;
Barateau, Anais ;
Simon, Antoine ;
de Crevoisier, Renaud ;
Bert, Julien ;
Sarrut, David .
MEDICAL PHYSICS, 2022, 49 (11) :6930-6944
[2]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[3]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[4]   Generalizable cone beam CT esophagus segmentation using physics-based data augmentation [J].
Alam, Sadegh R. ;
Li, Tianfang ;
Zhang, Pengpeng ;
Zhang, Si-Yuan ;
Nadeem, Saad .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (06)
[5]   Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part I: Intra-fraction breathing motion management [J].
Anastasi, Gail ;
Bertholet, Jenny ;
Poulsen, Per ;
Roggen, Toon ;
Garibaldi, Cristina ;
Tilly, Nina ;
Booth, Jeremy T. ;
Oelfke, Uwe ;
Heijmen, Ben ;
Aznar, Marianne C. .
RADIOTHERAPY AND ONCOLOGY, 2020, 153 :79-87
[6]   Automatic Head and Neck Tumor segmentation and outcome prediction relying on FDG-PET/CT images: Findings from the second edition of the HECKTOR challenge [J].
Andrearczyk, Vincent ;
Oreiller, Valentin ;
Boughdad, Sarah ;
Rest, Catherine Cheze Le ;
Tankyevych, Olena ;
Elhalawani, Hesham ;
Jreige, Mario ;
Prior, John O. ;
Vallieres, Martin ;
Visvikis, Dimitris ;
Hatt, Mathieu ;
Depeursinge, Adrien .
MEDICAL IMAGE ANALYSIS, 2023, 90
[7]   Comparison of CBCT-based dose calculation methods in head and neck cancer radiotherapy: from Hounsfield unit to density calibration curve to deep learning [J].
Barateau, Anais ;
De Crevoisier, Renaud ;
Largent, Axel ;
Mylona, Eugenia ;
Perichon, Nicolas ;
Castelli, Joel ;
Chajon, Enrique ;
Acosta, Oscar ;
Simon, Antoine ;
Nunes, Jean-Claude ;
Lafond, Caroline .
MEDICAL PHYSICS, 2020, 47 (10) :4683-4693
[8]   Real-Time Motion Analysis With 4D Deep Learning for Ultrasound-Guided Radiotherapy [J].
Bengs, Marcel ;
Sprenger, Johanna ;
Gerlach, Stefan ;
Neidhardt, Maximilian ;
Schlaefer, Alexander .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (09) :2690-2699
[9]   An Upgraded Siamese Neural Network for Motion Tracking in Ultrasound Image Sequences [J].
Bharadwaj, Skanda ;
Prasad, Sumukha ;
Almekkawy, Mohamed .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (12) :3515-3527
[10]  
Boda-Heggemann J., 2011, Strahlentherapie und Onkologie, V187, P284, DOI DOI 10.1007/S00066-011-2236-4