Two Matrix Theorems Arising from Nilpotent Groups

被引:0
|
作者
Zhao, Jing [1 ]
Liu, Heguo [1 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
nilpotent group; root; matrix; Chinese remainder theorem;
D O I
10.1142/S1005386724000373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a nilpotent group G without pi-torsion, and x, y is an element of G , if x(n) = y(n) for a pi-number n, then x=y ; if x(m) y(n) = y(n) x(m) for pi-numbers m, n, then xy = yx . This is a well-known result in group theory. In this paper, we prove two analogous theorems on matrices, which have independence significance. Specifically, let m be a given positive integer and A a complex square matrix satisfying that (i) all eigenvalues of A are nonnegative, and (ii) rank A(2) = rank A; then A has a unique m-th root X with rank X-2 = rank X , all eigenvalues of X are nonnegative, and moreover there is a polynomial f( lambda) with X = f (A). In addition, let A and B be complex nxn matrices with all eigenvalues nonnegative, and rank A(2) = rank A, rank B-2 = rank B; then (i) A=B when A (R) = B (R) for some positive integer r, and (ii) AB = BA when A(s) B-t = B-t A(s) for two positive integers s and t.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [41] Localization and completion of nilpotent groups of automorphisms
    Maruyama, Ken-Ichi
    TOPOLOGY, 2007, 46 (03) : 319 - 341
  • [42] On the uniqueness of roots in virtually nilpotent groups
    An Descheemaeker
    Wim Malfait
    Mathematische Zeitschrift, 1999, 232 : 487 - 503
  • [43] Approximation properties of nilpotent interlacings of groups
    Mamuchishvili A.I.
    Journal of Mathematical Sciences, 2008, 155 (5) : 709 - 747
  • [44] THE LEVI CLASSES GENERATED BY NILPOTENT GROUPS
    Lodeyshchikova, V. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (06) : 1075 - 1080
  • [45] Probabilistically-like nilpotent groups
    Palacin, Daniel
    JOURNAL OF ALGEBRA, 2022, 606 : 798 - 818
  • [46] Isomorphisms of Cayley graphs on nilpotent groups
    Morris, Dave Witte
    Morris, Joy
    Verret, Gabriel
    NEW YORK JOURNAL OF MATHEMATICS, 2016, 22 : 453 - 467
  • [47] On the period of Fibonacci sequences in nilpotent groups
    Karaduman, E
    Yavuz, U
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (2-3) : 321 - 332
  • [48] Nilpotent Q[x]-powered groups
    Majewicz, Stephen
    Combinatorial Group Theory, Discrete Groups, and Number Theory, 2006, 421 : 227 - 249
  • [49] On the uniqueness of roots in virtually nilpotent groups
    Descheemaeker, A
    Malfait, W
    MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (03) : 487 - 503
  • [50] NILPOTENT GROUPS OF CLASS THREE AND BRACES
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    PUBLICACIONS MATEMATIQUES, 2016, 60 (01) : 55 - 79