Compatibilization of poly(butylene adipate-co-terephthalate)/polylactic acid blends by gamma radiation

被引:0
作者
da Costa, Fernanda Andrade Tigre [1 ,2 ]
Cardoso, Elizabeth Carvalho Leite [1 ]
Dufresne, Alain [2 ]
Parra, Duclerc Fernandes [1 ]
机构
[1] Energy Res Inst, Dept Chem & Environm Nucl, IPEN CNEN SP, Cidade Univ,Ave Prof Lineu Prestes,2242-Butanta, BR-05508000 Sao Paulo, SP, Brazil
[2] Univ Grenoble Alpes, LGP2, CNRS, Grenoble INP, F-38000 Grenoble, France
关键词
PLA; PBAT; Compatibilization; Gamma radiation; TEREPHTHALATE; IRRADIATION; FILMS; OIL;
D O I
10.1007/s00289-024-05428-1
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polylactic acid (PLA) is a widely used biopolymer and is currently produced on a global scale. However, PLA has low melt strength, which limits its application. Poly(butylene adipate-co-terephthalate) (PBAT) is a fully biodegradable polymer and one of the most attractive polymers for hardening PLA. As PLA and PBAT are immiscible, they need to be compatibilized to improve the properties of the blend. In this context, the compatibilization of PLA/PBAT blends was investigated through an irradiation process. PLA was previously irradiated, at different absorbed doses, in a cobalt-60 source to assess the compatibility of its blends with PBAT. Differential scanning calorimetry showed a reduction in the glass transition, cold crystallization and melting temperatures, and a second melting peak was observed after polymer irradiation. Also, X-ray diffraction analyses revealed a slight increase in the crystalline fraction. Thermogravimetric analysis showed that as the absorbed dose increased, the thermal stability of PLA decreased. Fourier-transform infrared spectroscopy shows bands attributed to oxidized terminations of polymer chains with carbonyls attributed to the effect of irradiation exposure. For samples irradiated above 100 kGy, an increase in tensile strength and tensile modulus can be observed as the dose increases. Rheological measurements showed a decrease in the complex viscosity of irradiated PLA with increasing absorbed dose. The surface of the polymer blend with PLA irradiated with gamma rays at 150 kGy appears to be more homogeneous according to scanning electron analysis. The polymer blend with 150 kGy irradiated PLA showed improved interaction between the components.
引用
收藏
页码:14875 / 14902
页数:28
相关论文
共 50 条
  • [41] Synergistic reinforcing of poly(lactic acid) by poly(butylene adipate-co-terephthalate) and alumina nanoparticles
    Chen, Jie
    Hu, Rong-Rong
    Jin, Fan-Long
    Park, Soo-Jin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (16)
  • [42] DGEBA-Based Epoxy Resin as Compatibilizer for Biodegradable Poly (lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Lopes Pereira, Elaine C.
    Soares, Bluma G.
    Jesus, Rayan B.
    Sirqueira, Alex S.
    MACROMOLECULAR SYMPOSIA, 2018, 381 (01)
  • [43] Understanding the effect of chain extender on poly(butylene adipate-co-terephthalate) structure
    de Souza, Alana Gabrieli
    Dutra Nunes, Edilene de Cassia
    Rosa, Derval dos Santos
    IRANIAN POLYMER JOURNAL, 2019, 28 (12) : 1035 - 1044
  • [44] Toughening and thermal characteristics of plasticized polylactide and poly(butylene adipate-co-terephthalate) blend films: Influence of compatibilization
    Phetwarotai, Worasak
    Zawong, Montira
    Phusunti, Neeranuch
    Aht-Ong, Duangdao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 183 : 346 - 357
  • [45] Mechanical, Barrier, and Biodegradable Properties of Poly(butylene adipate-co-terephthalate)/Polyglycolic Acid Blends Prepared by Reactive Extrusion
    Xu, Zhibo
    Dong, Yunxiao
    Yang, Yong
    Zhu, Jin
    ACS APPLIED ENGINEERING MATERIALS, 2022, 1 (01): : 304 - 315
  • [46] The Key to High-Ductile of Poly(Lactic Acid)/Poly (Butylene Adipate-Co-Terephthalate) Blends: Dicumyl Peroxide In Situ Compatibilization and Low Crystal Degree
    Shen, Xukang
    Xu, Liyan
    Li, Zhang
    Pan, Qinghua
    Peng, Caiyu
    Yang, Haitang
    Song, Yanjiang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2025,
  • [47] Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/Poly(butylene adipate-co-terephthalate) Blends
    Dong, Weifu
    Zou, Benshu
    Yan, Yangyang
    Ma, Piming
    Chen, Mingqing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (10) : 20189 - 20203
  • [48] Synthesis of Bio-Nanomagnetite Using Poly(butylene adipate) and Poly(butylene adipate-co-terephthalate)
    F. Hosseini
    Z. Es’haghi
    Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 4361 - 4371
  • [49] Influence of nanosilica and chain extender on the mechanical behavior of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Khonakdar, Hanieh
    Yazdanbakhsh, Amir Hossein
    Mousavi, Seyed Rasoul
    Ahmadi, Shervin
    Arabi, Hasan
    Ruckdaschel, Holger
    Khonakdar, Hossein Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (44)
  • [50] Biodegradation Behavior of Poly (Lactic Acid) (PLA), Poly (Butylene Adipate-Co-Terephthalate) (PBAT), and Their Blends Under Digested Sludge Conditions
    Ren, Yanan
    Hu, Jing
    Yang, Mengru
    Weng, Yunxuan
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2019, 27 (12) : 2784 - 2792